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Abstract

Discrete geometry on colored point sets in the plane has a long
history, but this research area has been extensively developed in the
last two decades. In 2003, a short survey entitled “Discrete geometry
on red and blue points in the plane – A survey” was published. Since
then, many new and important results have been published, and thus
the need of a new and up-to-date survey is evident.
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1 Introduction

In this paper, we deal with discrete geometry on colored point sets in the
plane, and collect some related results in higher-dimensional space. On the
other hand, we do not deal with computational geometry (algorithms) on
this topic since there are many results on them and it needs another paper
to explain them. We also omit some topics including “Graph embedding”,
“Coloring points” and others due to the page limitation and a few new results
on these topics were obtained after the survey [79]. For these topics, the
reader is referred to the survey [79], the books [106] and [107].
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1.1 Notation and Definitions

We begin with some definitions and notation, which are used in this paper.
For a finite set X, the number of elements in X is denoted by |X| or #X.
In this paper, a line is regarded as a directed line so as to distinguish easily
between its left and right sides. Thus a line means a directed line. For a
line l in the plane, the open half-plane to the left of l is denote by left(l) and
the open half-plane to the right of l is denoted by right(l). In particular, the
plane is partitioned into three disjoint subsets left(l)∪ right(l)∪ l (see (1) of
Fig. 1). For a line l, let l∗ denote the line at the same position as l and with
the opposite direction of l (see (1) of Fig. 1). Thus left(l∗) = right(l) and
right(l∗) = left(l).

(1) (2) (3)

l

right(l)

left(l)

l*

X conv(X)

Figure 1: (1) A line l, l∗, left(l) and right(l); (2) A set X of points in the
plane and its convex hull conv(X); (3) A partition of the plane into 7 convex
polygons.

For a set X of points in the plane, the smallest closed convex set con-
taining X is called the convex hull of X and denoted by conv(X) (see (2) of
Fig. 1). For convenience, any region in the plane (whether closed or infinite)
whose boundary consists of non-crossing straight-line segments is referred to
as a polygon even if it is an infinite region. In other words, a polygon means a
simple polygon, which may be an infinite region. If a point x is contained in
the interior of a polygon P , then we will say that an open polygon P contains
x. In (3) of Fig. 1, the plane is partitioned into seven convex polygons, four
of which are infinite.

We consider discrete geometry on colored point sets in the plane. Through-
out this paper, let R, B and G always denote a set of red points, a set of blue
points and a set of green points, respectively. Moreover, we always assume
that R, B and G are disjoint. If no three points of R ∪B (or R ∪B ∪G) lie
on the same line in the plane, we say that R and B (or R, B and G) are in
general position. We always assume that R and B (or R, B and G) are in
general position unless explicitly stated otherwise.
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1.2 Borsuk-Ulam Theorem

Let n ≥ 2 be an integer, and let µ : Rn → R be a measure. In this paper,
we always assume that every measure µ has the following properties: (i) µ is
absolutely continuous with respect to the Lebesgue measure; and (ii) there is
a bounded domain D ⊂ Rn such that 0 < µ(D) = µ(Rn) < ∞. Thus every
open set X of Rn is measurable and µ(h) = 0 for every hyperplane h of Rn.
Such a measure is called a mass distribution. Let

Sn = {(x0, x1, . . . , xn) ∈ Rn+1 : x2
0 + x2

1 + · · ·+ x2
n = 1}

be the unit sphere in Rn+1. For a vector u = (u0, u1, u2) ∈ S2, where u2
0 +

u2
1 + u2

2 = 1, define two open half-planes H+(u) and H−(u) as

H+(u) = {(x, y) ∈ R2 : u1x+ u2y > u0},
H−(u) = {(x, y) ∈ R2 : u1x+ u2y < u0}.

A continuous mapping f : Sn → Rd is said to be antipodal if

f(−u) = −f(u) for all u ∈ Sn.

The next theorem has many applications in discrete geometry. For example,
the continuous version of the Ham-sandwich Theorem can be shown by this
theorem.

Theorem 1.1 (Borsuk-Ulam Theorem, [37], [100]) Let n ≥ 2 be an
integer. Then for every antipodal continuous mapping f : Sn → Rn, there
exists a vector v ∈ Sn such that f(v) = 0 = (0, 0, . . . , 0).

2 Balanced Partitions

In this section, we consider balanced partition problems of colored point sets
in the plane, on a line, or on a circle. Namely, we want to partition the plane
into some convex polygons so that each open polygon contains a prescribed
number of points colored with c for each color c. For lines or circles, we want
to find an interval having the same property, i.e., containing a prescribed
number of points of each color. Recall that R, B and G always denote a
set of red points, a set of blue points and a set of green points, respectively.
Moreover, we always assume that R and B (or R, B and G) are in general
position.
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2.1 Intervals on Lines and Circles

We first consider some problems on colored point sets on a line in general
position, that is, no two points are in the same position.

Proposition 2.1 Assume that R and B are on a line. Then there exists an
open interval I that contains exactly

⌊ |R|
2

⌋
red points and

⌊ |B|
2

⌋
blue points

(see (1) of Fig. 2).

This proposition can be generalized to d-colored point sets, as in the next
result proved by Goldberg and West [59] and Alon and West [18]. The proof
of this result uses the Ham-sandwich Theorem (Theorem 2.7).

Theorem 2.2 (Necklace Theorem [59], [18]) Let d ≥ 2 be an integer.
Assume that d pairwise disjoint point sets X1, X2, . . . , Xd are on a line. Then
the line can be divided into two parts A and B, which consist of some intervals
of the line obtained by at most d cuts of the line, so that each of A and B
contains

⌊ |Xi|
2

⌋
or

⌈ |Xi|
2

⌉
points of each Xi, 1 ≤ i ≤ d (see (2) of Fig. 2).

Sketch of proof. We may assume that the points are on the real number line
R. Let f : R → Rd be a mapping defined by f(t) = (t, t2, . . . , td) for every
t ∈ R. Thus, all points in X1∪X2∪· · ·∪Xd on the line are mapped onto the
moment curve in Rd. Then the images of points are in general position in Rd.
By Theorem 7.1, there exists a hyperplane h that bisects every Xi, 1 ≤ i ≤ d.
Namely, each of two open half-spaces defined by h contains exactly

⌊ |Xi|
2

⌋
or⌈ |Xi|

2

⌉
points of each Xi. Moreover, h intersects the moment curve at most

d points, which corresponds to cuts of the line. Hence the two parts of the
line included in two open half-spaces are the desired two parts. 2

Red points Blue points Greem points 
(1) (2)

I A BA B

Figure 2: (1) An interval I containing exactly half of red points and of blue
points; (2) Three cuts partition a necklace consisting of 3-colored points into
two parts A and B so that A and B each contain the same number of points
of each color.

Assume that there is a necklace consisting of d kind of beads, each with
even number elements, and one wants to divide it into two persons with the
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same value. By Theorem 2.2, we can divided the necklace into two groups of
intervals by cutting the necklace into at most d + 1 intervals, in such a way
that each group of intervals contains the same number of beads of each kind.
So this theorem is called the Necklace Theorem.

The Necklace Theorem was generalized as follows.

Theorem 2.3 (Necklace Theorem (for k people), Alon [17]) Let d ≥
2, k ≥ 2 and ci ≥ 1, 1 ≤ i ≤ m, be integers. Assume that a necklace has kci
beads of each kind 1 ≤ i ≤ m. Then we can divide the necklace into k groups
by (k− 1)d cuts so that each group (i.e., each person) has exactly ci beads of
each kind 1 ≤ i ≤ d.

For the existence problem of an interval that contains a prescribed num-
bers of red points and blue points, we have the following result:

Theorem 2.4 (Kaneko and Kano [80]) Assume that R and B are on a
line and |R| ≤ |B|. Let 1 ≤ r ≤ |R| and 1 ≤ b ≤ |B| be two integers. Then
there always exists an interval that contains exactly r red points and b blue
points if and only if(⌊ |R|

r + 1

⌋
+ 1

)
(b− 1) < |B| <

⌊ |R| − 1

r − 1

⌋
(b+ 1),

where the rightmost term is infinite when r = 1 (see Fig. 3).

(1)

(2)

Red points Blue points 

Figure 3: (1) A configuration on a line with |R| = 10 and |B| = 20, and an
interval containing 3 red points and 6 blue points. (2) A configuration on a
line with |R| = 10 and |B| = 20 that has no interval containing 4 red points
and 8 blue points.

We next consider some problems of colored point sets on a circle.

Theorem 2.5 (Kaneko and Kano [80]) Assume that R and B are on a
circle and |R| ≤ |B|. Let 1 ≤ r ≤ |R| and 1 ≤ b ≤ |B| be two integers. Then
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there always exists an interval on the circle that contains exactly r red points
and b blue points if and only if

|R|
r + 1

(b− 1) < |B| < |R|
r − 1

(b+ 1),

where the rightmost term is infinite when r = 1 (see Fig. 4).

(1) (2)

Red points 

Blue points 

Figure 4: (1) A configuration on a circle with |R| = 10 and |B| = 20, and
an interval containing 4 red points and 6 blue points; (2): A configuration
with |R| = 10 and |B| = 20 that has no interval containing 4 red points and
5 blue points.

The following theorem deals with 3-colored point sets on a circle.

Theorem 2.6 (Bereg et al. [31]) Assume that R, B and G are on a circle
and |R| = |B| = |G| = n. Then for every integer 1 ≤ k ≤ n, there exist two
intervals I and J such that I ∪ J contains exactly k points of each color (see
Fig. 5 (1)).

Note that Fig. 5 (2) shows that the condition |R| = |B| = |G| = n is
necessary.

2.2 Bisectors in the Plane

Consider a ham-sandwich consisting of one slice of bread and one slice of
ham, both with possibly irregular shapes (see (1) of Fig. 6). We want to cut
this ham-sandwich using a kitchen knife so that each slice contains exactly
the same amount bread and ham. The Ham-sandwich Theorem guarantees
the existence of such a cut, which is also referred to as a bisector. From this
theorem, a similar problem derives on red and blue points in the plane. We
can show that if 2n red points and 2m blue points are given in the plane,
then the plane can be partitioned into two half-planes by a line so that each
open half-plane contains precisely n red points and m blue points.
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(1) (2)

Red points 

Blue points 

Green points 

I

J

Figure 5: (1) A configuration on a circle with |R| = |B| = |G| = 10 and
two intervals I and J such that I ∪ J contains 4 points of each color. (2)
A configuration with |R| = |B| = 8 and |G| = 4 that has no intervals I ∪ J
containing 3 points of each color.

left(l)

right(l)

l
(1) (2)

l Red points 

Blue points 

Figure 6: (1) A bisector of a ham-sandwich consisting of bread and ham; (2)
A bisector l of R and B in the plane with |R| even and |B| odd.
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Theorem 2.7 (Ham-sandwich Theorem (discrete)) Assume that R and
B are in the plane. Then there exists a line l that satisfies |left(l) ∩ R| =
|right(l) ∩ R|, |left(l) ∩ B| = |right(l) ∩ B|, |R ∩ l| ≤ 1 and |B ∩ l| ≤ 1. In
particular, if |R| is even, then l passes through no red point. Otherwise, l
passes through exactly one red point. A similar situation holds for B.

The line l given in the above theorem is called a bisector or a ham-
sandwich cut (see (2) of Fig. 6).

Let us give a remark on the Ham-sandwich Theorem (discrete). Fig. 7 (1)
shows that the condition that R and B are in general position is necessary.
Moreover, (2) and (3) of Fig. 7 shows that every bisector of red points is
almost a bisector of blue points.

Red points Blue points 

(1) (2) (3)

Figure 7: (1) A configuration of red points and blue points not being in
general position in the plane, which has no bisector of red and blue points,
and the line drawn in the figure is a bisector of blue points; (2) and (3)
Configurations for which a bisector of red points is almost a bisector of blue
points.

The following proposition is a variation of the Ham-sandwich Theorem,
and is useful in some proofs of theorems.

Proposition 2.8 Assume that R and B are in the plane such that |R| is
odd and |B| is even. Then there exists a line l that passes through one
red point and one blue point and satisfies |left(l) ∩ R| = |left(l) ∩ R| and
|left(l) ∩B| = |B|

2
and |right(l) ∩B| = |B|

2
− 1.

Ham-sandwich Theorem is easily shown by the following lemma by ap-
plying a bisector l of red points and l∗ to l1 and l2, or l2 and l1, respectively,
where l∗ denotes the line at the same position as l and with the opposite
direction of l. This lemma is also useful for other theorems. Notice that a
point in R ∪B is sometimes called a data point.
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Lemma 2.9 (Intermediate Value Lemma, [33], [73]) Given R and B
in the plane, assume that there are two lines l1 and l2 which pass through no
data point and satisfy |left(l1) ∩ R| = |left(l2) ∩ R| = m and |left(l1) ∩ B| ≤
|left(l2)∩B|. Then for every integer k, |left(l1)∩B| ≤ k ≤ |left(l2)∩B|, there
exists a line l3 that passes through no data point and satisfies |left(l3)∩R| = m
and |left(l3) ∩B| = k.

The following lemma is a variation of the Intermediate Value Lemma.

Lemma 2.10 ([3]) Given R and B in the plane, assume that there are two
lines l1 and l2 which pass through no data point and satisfy |left(l1) ∩ (R ∪
B)| = |left(l2) ∩ (R ∪ B)| = m. Then (i) for every integer k, |left(l1) ∩ B| ≤
k ≤ |left(l2) ∩ B|, there exists a line l3 that passes through no data point
and satisfies |left(ℓ3) ∩ (R ∪ B)| = m and |left(ℓ3) ∩ B| = k; and (ii) there
exists a line l4 that passes through a blue point and no red point and satisfies
|left(ℓ4) ∩ (R ∪B)| = m− 1 and |left(ℓ4) ∩B| = |left(ℓ1) ∩B|.

A fast algorithm for finding a bisector of the Ham-sandwich Theorem was
obtained after long and much research.

Theorem 2.11 (Lo, Matouśek and Steiger [99]) Assume that R and B
are given in the plane. Then there is a linear time algorithm for finding a
bisector of R and B.

The Ham-sandwich Theorem is an easy consequence of the Intermediate
Value Lemma. We now sketch another proof of the Ham-sandwich Theorem
using Borsuk-Ulam Theorem (Theorem 1.1). Notice that it is easy to de-
rive the discrete version of the Ham-sandwich Theorem from the following
continuous version.

Theorem 2.12 (Ham-sandwich Theorem (continuous)) Assume that two
mass distributions (or absolutely continuous finite measures ) µ1 and µ2 are
given in the plane. Then the plane can be partitioned into two open half-
planes left(l) and right(l) by a line l so that µ1(left(l)) = µ1(right(l)) and
µ2(left(l)) = µ2(right(l)).

Sketch of Proof. For a vector u = (u0, u1, u2) ∈ S2, where u2
0 + u2

1 + u2
2 = 1,

define two half-planes H+(u) and H−(u) as in Section 1.
Let µ1(R2) = 2s and µ2(R2) = 2t, where s and t are positive real numbers.

Then define a continuous function f : S2 → R2 as

f(u) =
(
s− µ1(H

+(u)), t− µ2(H
+(u)

)
.
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Or without using s or t, we can define f as

f(u) =
(
µ1(H

+(u))− µ1(H
−(u)), µ2(H

+(u))− µ2(H
−(u))

)
.

Then f(u) is antipodal, and thus by Borsuk-Ulam Theorem, there exists
a vector v = (v0, v1, v2) ∈ S2 such that f(v) = (0, 0). This implies either
µ1(H

+(v)) = s and µ2(H
+(v)) = t or µi(H

+(v)) = µi(H
−(v)) for i ∈ {1, 2}.

Consequently Theorem 2.12 is proved. 2

We now explain an idea to derive discrete version of Ham-sandwich theo-
rem from its continuous version. Assume that R and B are given in the plane
in general position. We replace each point x ∈ R ∪ B by a disk with center
x and with sufficiently small fixed diameter so that no line passes through
three of these disks. A disk whose center point is red (blue) is called a red
disk (blue disk, resp.). Then we put a thin cylinder on each disk with weight
one (see Fig. 8), and the weight of every cylinder is uniformly distributed on
the disk. For a region X in the plane, we define two measures µ1 and µ2 as
follows:

µ1(X) = the weight of red cylinders above X, and

µ2(X) = the weight of blue cylinders above X,

where if a part of cylinder lies on X, then we include the weight of the part
of cylinder on X.

Then µ1 and µ2 are mass distributions on the plane, and by Theo-
rem 2.12, there exists a bisector l, which satisfies µ1(left(l)) = µ1(right(l))
and µ2(left(l)) = µ2(right(l)). For simplicity, here we assume that both |R|
and |B| are even. If l does not passes through any disk, then l is a bisector of
R and B. Otherwise, l passes through exactly two disks with the same color,
and we can obtain the desired line by slightly moving l so that the resulting
line passes through no data point (see (2) and (3) of Fig. 8).

The following proposition says that a monochromatic point set in the
plane can be partitioned into 4 equal parts by two lines [102]. This result is
an easy consequence of the Ham-sandwich Theorem. Namely, we first take
a bisector l1 of a set S, and color points in left(l1) red and those in right(l1)
blue (see (1) of Fig. 9). Then applying Ham-sandwich theorem to these red
and blue points, we obtain a bisector l2. Then l1 and l2 are the desired two
lines (see (2) of Fig. 9). Notice that it was proved by Buck and Buck [39]
that for any convex set K in the plane, there exists three concurrent lines
that partition K into 6 sectors with the same area.
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R={    }  B={    }(1) (2)

l

(3)
l

Figure 8: (1) Given red points and blue points: (2) The cylinders covering
red and blue disks and a bisector l; (3) The bisector l of red and blue points
obtained from the bisector in (2).

Proposition 2.13 (Megiddo [102]) Assume that a set S of points is in
the plane in general position and |S| = 4n for some integer n ≥ 1. Then
there exist two lines such that each of four sectors determined by the two lines
contains exactly n points of S. A similar result holds for a mass distribution
(see (2) and (3) of Fig. 9).

(3)

l2

l1

l2

(1)

l1

(2)

l1

Figure 9: (1) Color points in left(l1) with red and points in right(l1) with
blue; (2) Lines l1 and l2 partition a set of points into four equal sectors; (3)
Breads can be partitioned into 4 parts with the same volume by two cuts.

We now consider some problems on 3-colored point sets and lines, where
point sets possess some prescribed properties. Such lines are called balanced
lines.

Theorem 2.14 (Bereg and Kano [32]) Assume that R, B and G are in
the plane and |R| = |B| = |G| ≥ 2. If all the vertices of conv(R ∪ B ∪ G)
have the same color, then there exists an integer 1 ≤ k ≤ n− 1 and a line l
such that left(l) contains exactly k points of each color, namely, there exists
a balanced line (see (1) of Fig. 10).

The next theorem shows another balanced line for 3-colored point sets.
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Red points 

Blue points

Green points 

l (1) (2)

Figure 10: (1) A balanced line l of Theorem 2.14 such that left(l) contains
exactly 4 points of each color; (2) A configuration of R ∪ B ∪ G which has
no balanced line.

Theorem 2.15 (Kano and Kynčl [84]) Let n ≥ 2 be an integer. Assume
that R, B and G are in the plane, |R∪B∪G| = 2n and 0 ≤ |R|, |G|, |B| ≤ n.
Then there exist an integer 1 ≤ k ≤ n−1 and a line l such that left(l) contains
exactly 2k points of R∪B∪G and at most k points of each color and right(l)
contains exactly 2(n − k) points of R ∪ B ∪ G and at most n − k points of
each color (see Fig. 11).

Red points 

Blue points 

Green points 

l

Figure 11: A balanced line l such that left(l) contains 4 data points and at
most 2 points of each color and right(l) contains 8 data points and at most
4 points of each color.

A double wedge is a region consisting of two opposite wedges determined
by two lines (see (1) of Fig. 12). If two lines are parallel, then two outer
regions or one region between them forms a double wedge (see (3) of Fig. 12).
If the plane is partitioned into two double wedges by two lines l1 and l2, then
we say that {l1, l2} partitions the plane. The following theorem shows the
existence of a balanced double wedge for 3-colored point sets.

Theorem 2.16 (Bereg et al. [31]) Let n ≥ 1 be an integer. Assume that
R, B and G are in the plane and |R| = |B| = |G| = 2n. Then there exists
a set {l1, l2} of two lines that simultaneously bisects R, B and G (see (3) of
Fig. 12).
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(1) (3)

Red points 

Blue points 

Green points 
l2l1

l1
l2

l2

l1

(2)

Figure 12: (1) Two double wedges determined by {l1, l2}, each of which
consists of blue wedges or white wedges; (2) Two double wedges determined
by two parallel lines {l1, l2}; (3) A set {l1, l2} simultaneously bisects R, B
and G, that is, each double wedge contains 3 points of each color.

The following theorem shows the existence of a pair of lines that bisect
4 mass distributions or 4-colored point sets, and so it is a generalization of
Theorem 2.16. Notice that this is proved using Borsuk-Ulam Theorem.

Theorem 2.17 (Barba, Pilz and Schnider [24]) Assume that 4 mass dis-
tributions µ1, µ2, µ3, µ4 are defined on the plane. Then there exists a set
{l1, l2} of two lines that simultaneously bisects µ1, µ2, µ3, µ4 (see Fig. 13)

Red points 

Blue points 

Green points 

l2
l2

l1 (2)(1)

Purple points 

l1

Figure 13: (1) A set {l1, l2} simultaneously bisects µ1, µ2, µ3, µ4; (2) A set
{l1, l2} simultaneously bisects 4-colored point sets.

Theorem 2.18 (Barba, Pilz and Schnider [24]) Assume that 3 mass dis-
tributions µ1, µ2, µ3 are defined on the plane, and a line l is in the plane.
Then there exists a set {l1, l2} of lines that simultaneously bisects µ1, µ2, µ3

and whose l1 is parallel to l.

Theorem 2.19 (Barba, Pilz and Schnider [24]) Assume that 3 mass dis-
tributions µ1, µ2, µ3 are defined on the plane, and a point p is in the plane.
Then there exists a set {l1, l2} of lines that simultaneously bisects µ1, µ2, µ3

and whose l1 passes through p.
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The following theorem was conjectured by Barba et al. [24] and proved
by Hubard and Karasev [66].

Theorem 2.20 (Hubard and Karasev [66]) Let n ≥ 1 be an integer.
Assume that 2n mass distributions µ1, µ2, . . . , µ2n are defined on the plane.
Then there exist n lines l1, l2, . . . , ln such that {l1, l2, . . . , ln} simultaneously
bisects µ1, µ2, . . . , µ2n (see Fig. 14).

Note that Theorem 2.20 with n = 1 is the Ham-sandwich Theorem, and
with n = 2 is Theorem 2.17. Moreover, Theorem 2.20 follows from Theo-
rem 7.13.

l2l1

(2)(1)

l3 l2

l1
l4

l3l2

l1

(3)

µ2,µ1, µ3, µ4 µ2,µ1, ... , µ6 µ2,µ1, ... , µ8

Figure 14: (1) Two double wedges determined by {l1, l2}, which simultane-
ously bisects 4 mass distributions µ1, µ2, µ3, µ4; (2) Two regions determined
by {l1, l2, l3}, which simultaneously bisects 6 mass distributions µ1, µ2, . . . , µ6;
(3) Two regions determined by {l1, l2, l3, l4}, which simultaneously bisects 8
mass distributions µ1, µ2, . . . , µ8.

Theorem 2.21 (Stone and Tukey [116]) Let t ≥ 2 be an integer. As-
sume that t mass distributions µ1, µ2, . . . , µt are defined on R2. Then there
exists a polynomial p(x) of degree at most t − 1 that simultaneously bisects
all µi, namely,

µi({(x, y) ∈ R2 : y > p(x)}) = 1

2
µi(R2) for all 1 ≤ i ≤ t. (see Fig. 15)

The following theorem is a generalization of Theorem 6.2 given later.

Theorem 2.22 (Karasev, Roldán-Pensado and Soberón [93]) Let n ≥
2 be an integer. Assume that n mass distributions µ1, µ2, . . . , µn are defined
on the plane. Then there exists a path formed by only horizontal and ver-
tical line segments with at most n − 1 turns that simultaneously bisects all
µi. Moreover, the line is taken so that it is y-monotone and may go through
infinity in the horizontal direction several times (see Fig. 16).
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y=p(x)=ax3+bx2+cx+d
y

x

Figure 15: Four mass distributions defined on the plane are simultaneously
bisected by a cubic polynomial y = ax3 + bx2 + cx+ d.

X

Y

X

X

Y

(1) (2)

Figure 16: (1) 5 mass distributions µi, 1 ≤ i ≤ 5, defined on the plane are
simultaneously bisected by a path consisting of horizontal and vertical lines
and having at most 4 turns, namely, µi(X) = µi(Y ) for all 1 ≤ i ≤ 5; (2)
Note that the path may go through infinity in the horizontal direction.
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2.3 Balanced Partitions of the Plane

For R and B in the plane, if the plane is partitioned into n convex polygons
so that every open polygon contains a fixed number of red points and of blue
points, then we call such a partition a balanced partition, equitable partition or
equipartition. The following theorem, easily obtained by induction and with
the use of the Ham-sandwich Theorem, is a starting point of this subsection.

A graph drawn in the plane is called a geometric graph if every edge is a
straight line segment. A matching each of whose edges joins a red point and
a blue point is called a bichromatic matching or an alternating matching. A
matching covering all given points is called a perfect matching.

Theorem 2.23 Assume that R and B are in the plane and |R| = |B| = n ≥
1. Then (i) the plane can be partitioned into n convex polygons so that every
open polygon contains exactly one red point and one blue point; and (ii) there
exists a non-crossing geometric alternating perfect matching on R ∪ B (see
(1) and (2) of Fig. 17).

It is obvious that (i) of Theorem 2.23 implies (ii). On the other hand,
(ii) does not imply (i) as shown in (4) of Fig. 17 [33]. We can also prove (ii)
directly as follows. It is obvious that there exists a geometric bichromatic
perfect matching on R∪B, which may have some crossings (see (3) of Fig. 17).
If we take such a matching with minimum total length of edges, then such a
matching has no crossing (see (3) of Fig. 17).

(3)(2) (4) (5)(1)

Red points Blue points 

Figure 17: (1) A balanced partition; (2) A non-crossing geometric bichro-
matic perfect matching on R ∪ B; (3) Two crossing edges and two non-
crossing edges with a smaller sum of edge lengths; (4) A non-crossing geo-
metric bichromatic perfect matching on R∪B for which there is no partition
of the plane into three convex polygons such that each polygon contains one
edge [33]; (5) A balanced convex partition of the red and blue points given
in (4).

Theorem 2.23 can be generalized to Theorem 2.24, which is called Bal-
anced Partition Theorem or Equitable Partition Theorem. Notice that Kaneko
and Kano ([73] and [75]) proved the case where a = 1, 2 in Theorem 2.24 and
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conjectured that the theorem holds for a ≥ 3. Later on, the said conjecture
became a theorem with three independently written proofs (Bespamyatnikh,
Kirkpatrick and Snoeyink [33], Ito et. al [71] and Sakai [112]). Note that in
the following theorem, g stands for the number of groups (i.e., polygons).

Theorem 2.24 (Balanced Partition Theorem, [33], [71], [112]) Let a ≥
1, b ≥ 1 and g ≥ 1 be integers. Assume that R and B are in the plane, and
that |R| = ag and |B| = bg. Then the plane can be partitioned into g convex
polygons so that every open polygon contains exactly a red points and b blue
points (see (1) of Fig. 18.)

(1) (2) |R|=2・5 + 2    |B|=4・5+2

Red points =

Blue points =

Figure 18: (1) A balanced partition with a = 3, b = 4 and g = 5; (2) A
partition of Theorem 2.27 with a = 2, b = 4, g = 5, |R| = 12 and |B| = 22.

An algorithm for finding balanced partition is obtained as follows.

Theorem 2.25 (Bespamyatnikh, Kirkpatrick and Snoeyink [33]) Let
a ≥ 1, b ≥ 1 and g ≥ 1 be integers. Assume that R and B are in the plane,
and that |R| = ag and |B| = bg. Let n = |R| + |B|. Then there is an algo-
rithm for finding a balanced partition of R ∪ B in O(n4/3 log3 n log g) time.

Balanced partition of two mass distributions (i.e., absolutely continuous
Lebesgue measures) defined on the plane is also obtained. Note that a mass
distribution µ with µ(R2) = 1 is called a probability measure.

Theorem 2.26 (Balanced Partition Theorem (continuous), Bespamy-
atnikh, Kirkpatrick and Snoeyink [33], Sakai [112] ) Let g ≥ 1
be an integer. Assume that two mass distributions µa and µb are defined
on the plane R2. Then the plane can be partitioned into g convex polygons
X1, X2, . . . , Xg so that

µa(Xi) =
µa(R2)

g
and µb(Xi) =

µb(R2)

g
for all 1 ≤ i ≤ g.
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In order to prove the Balanced Partition Theorem, they showed that if
for every integer 1 ≤ k ≤ n − 1, there is no line l such that left(l) contains
exactly ak red points and bk blue points, then there exist three positive
integers g1, g2, g3 with g1 + g2 + g3 = g and three convex wedges W1, W2

and W3 determined by three rays emanating from a common apex such that
every open wedge Wi contains exactly agi red points and bgi blue points.
Moreover, it can be shown that gi ≤ (2g/3) for every i.

In the case where |R| and |B| are not multiples of a and b, we can obtain
a partition of the plane given in the following theorem.

Theorem 2.27 (Kano and Uno [90]) Let a ≥ 1 and b ≥ 1 and g ≥ 2 be
integers. Assume that R and B are in the plane, and that ag ≤ |R| < (a+1)g
and bg ≤ |B| < (b + 1)g. Then the plane can be partitioned into g convex
polygons so that every open polygon contains exactly a red points and b blue
points and that the remaining red and blue points, if any, lie on the boundary
of the partition (see (2) of Fig. 18).

Assume that ag ≤ |R| ≤ (a+ 1)g and bg ≤ |B| ≤ (b+ 1)g. Without loss
of generality, we may assume that |R| − ag ≤ |B| − bg. Let g3 = |R| − ag,
g2 = |B| − bg − g3 and g1 = g − g2 − g3. Then we can express |R| =
a(g1+ g2)+ (a+1)g3 and |B| = bg1+(b+1)(g2+ g3), where g = g1+ g2+ g3,
g1 ≥ 0, g2 ≥ 0 and g3 ≥ 0. In this case, we can find the following partition.

Theorem 2.28 (Kano and Uno [89]) Let a ≥ 1, b ≥ 1, g1 ≥ 0, g2 ≥ 0
and g3 ≥ 0 be integers such that g = g1 + g2 + g3 ≥ 1. Assume that R
and B are in the plane, and that |R| = a(g1 + g2) + (a + 1)g3 and |B| =
bg1+(b+1)(g2+g3). Then the plane can be partitioned into g1+g2+g3 convex
polygons X1, . . . , Xg1 , Y1, . . . , Yg2 , Z1, . . . , Zg3 so that every open Xi contains
exactly a red points and b blue points, every open Yj contains exactly a red
points and b + 1 blue points, and every open Zk contains exactly a + 1 red
points and b+ 1 blue points (see (1) of Fig. 19).

The following theorem gives another stronger result in a special case.

Theorem 2.29 (Kaneko, Kano and Suzuki [82]) Let c ≥ 1, g ≥ 0 and
h ≥ 0 be integers such that g+h ≥ 1. Assume that R and B are in the plane,
and that |R| = cg + (c+ 1)h and |B| = (c+ 1)g + ch. Then the plane can be
partitioned into g + h convex polygons X1, · · · , Xg, Y1, . . . , Yh so that every
open Xi contains exactly c red points and c + 1 blue points, and every open
Yj contains exactly c+ 1 red points and c blue points (see (2) of Fig. 19).
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(1) (2)

 Red points Blue points 

|R|=2・5 + 3・2   
|B|=3・5 + 2・2

 |R|=2・3 + 2・1 + 3・2    
|B|=4・3 + 5・1 + 5・2

Figure 19: (1) A balanced partition given in Theorem 2.28 with a = 2, b = 4,
g1 = 3, g2 = 1 and g3 = 2; (2) A balanced partition of Theorem 2.29 with
c = 2, g = 5 and h = 2.

(2)(1)

xyR1={    }

B={    }

 |B|=3|R1| + 4|R2|

(3)

 R2={    }

Figure 20: (1) A balanced partition of Theorem 2.30 with |R1| = 3, |R2| = 3,
b = 3 and |B| = 21; (2) A configuration that has no partition of Theorem 2.30
with R1 = {x}, R2 = {y}, b = 1 and b+2 = 3; (3) A configuration that has no
partition of Theorem 2.29 with c = 3, c+2 = 5, g = h = 1, |R| = 3g+5h = 8
and |B| = 5g + 3h = 8.
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Fig. 20 (3) shows that Theorem 2.29 does not hold for c and c+2 instead
of c and c+1. If a = 1 in Balanced Partition Theorem, the theorem also can
be strengthened as follows.

Theorem 2.30 (Kaneko and Kano [81]) Let b ≥ 1, g ≥ 1 and h ≥ 1
be integers. Assume that R and B are in the plane, and that R = R1 ∪ R2

(disjoint union), |R1| = g, |R2| = h and |B| = bg+ (b+1)h. Then the plane
can be partitioned into g + h convex polygons X1, . . . , Xg, Y1, . . . , Yh so that
every open Xi contains exactly one red point of R1 and b blue points and
every open Yj contains exactly one red point of R2 and b+1 blue points (see
(1) of Fig. 20) .

Notice that Theorem 2.30 cannot be extended to b and b+2 as shown in
(2) of. Fig. 20.

Conjecture 2.31 (Kaneko and Kano [77]) Let a, b, n1, n2, . . . , ng be pos-
itive integers, g ≥ 3 be integers, and let N = n1+n2+ · · ·+ng. Assume that
R and B are in the plane, |R| = aN , |B| = bN , and that 1 ≤ ni ≤ N

3
for

every 1 ≤ i ≤ g. Then the plane can be partitioned into g convex polygons
X1, X2, . . . , Xg so that open Xi contains exactly ani red points and bni blue
points for every 1 ≤ i ≤ g (see (1) of Fig. 21).

X1

(1)

X5

X3

X4

X2

X1

(2)

α2
α1

α3

α5 α4X5

X3

X4

X2

n3

n1

n2

n4
n5

µ2

µ1

Red points 

Blue points 

Figure 21: (1) A balanced partition of Conjecture 2.31 with a = 1, b =
2, n1 = 1, n2 = 2, n3 = n4 = 3, n5 = 4 and N = 13; (2) A balanced partition
of Conjecture 2.32.

The above conjecture is almost equivalent to this next conjecture, and if
the conjecture is true, then the condition 1 ≤ ni ≤ N

3
is necessary and sharp

[96].

Conjecture 2.32 Let g ≥ 3 be integer and α1, α2, . . . , αg be positive real
numbers such that α1+α2+ · · ·+αg = 1 and 0 < αi ≤ 1

3
for every 1 ≤ i ≤ g.

20



Assume that two probability measures µa and µb are defined on the plane.
Then the plane can be partitioned into g convex polygons X1, X2, · · · , Xg so
that µa(Xi) = µb(Xi) = αi for every 1 ≤ i ≤ g (see (2) of Fig. 21).

Theorem 2.33 (Holmsen, Kynčl and Valculescu [63]) Let k ≥ 2 and
n ≥ 1 be integers. Assume that R and B are in the plane, and that |R|+|B| =
kn, |R| ≥ n and |B| ≥ n. Then R ∪ B can be partitioned into n disjoint
subsets X1, X2, . . . , Xn so that every Xi contains exactly k points including at
least one red point and at least one blue point and conv(Xi) ∩ conv(Xj) = ∅
for all 1 ≤ i < j ≤ n (see (1) of Fig. 22).

Let S be a set of colored points in the plane. If a subset X ⊂ S satisfies
conv(X)∩S = X, we say that conv(X) is an island spanned by S or S spans
conv(X). Moreover, if conv(X) is an island spanned by S and has exactly k
points of S, then conv(X) is called a k-island. If X contains at least j points
with distinct colors, then X is called j-colorful. On the other hand, X is
called an m-colored point set if the number of colors in X is at most m. So
a 3-colored point set in the plane is a subset of R ∪ B ∪ G. By using these
terminologies, Theorem 2.33 can be presented as follows, and a conjecture is
given.

Red points Blue points (1) Green points Purple points 
(2)

Figure 22: (1) A partition of Theorem 2.33, in other words, a 2-colored
point set of 42 points that spans 7 pairwise disjoint 2-colorful 6-islands; (2)
A partition of Conjecture 2.35, in other words, a 4-colored point set of 42
points that spans 7 pairwise disjoint 2-colorful 6-islands .

Theorem 2.34 (Holmsen, Kynčl and Valculescu [63]) Let k ≥ 2 and
n ≥ 1 be integers, and let S be a 2-colored point set in the plane in general
position. If |S| = kn and S contains at least n points of each color, then S
spans n pairwise disjoint 2-colorful k-islands (see (1) of Fig. 22).
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Conjecture 2.35 (Holmsen, Kynčl and Valculescu [63]) Let k ≥ 2 and
m ≥ 2 be integers. Let S be an m-colored point set of kn points in the plane
in general position. Suppose that S has a partition Y1 ∪ Y2 ∪ · · · ∪ Yn such
that every Yi is 2-colorful and contains k points. Then X spans n pairwise
disjoint 2-colorful k-islands (see (2) of Fig. 22).

The above conjecture says that if S has a partition Y1 ∪ Y2 ∪ · · · ∪ Yn

having certain combinatorial properties (being 2-colorful and containing k
points), then S can be partitioned into Z1 ∪Z2 ∪ · · · ∪Zn that has the same
combinatorial properties as Y1 ∪ Y2 ∪ · · · ∪ Yn together with a geometric
property conv(Zi) ∩ conv(Zj) = ∅ for all i ̸= j.

A region X of a polygon P is said to be relatively-convex if for any two
points in X, a geodesic path (shortest path) connecting them in P is con-
tained in X (see Fig. 23).

Theorem 2.36 (Bose et. al [38]) Let P be a polygon in the plane. As-
sume that R and B are in the interior of P . Then there exists a geodesic
bisector in P . Namely, P can be partitioned into two relatively-convex re-
gions by a geodesic bisector so that each region contains exactly

⌊ |R|
2

⌋
red

points and
⌊ |B|

2

⌋
blue points in its interior (see (1) of Fig. 23).

Theorem 2.37 (Bereg, Bose and Kirkpatrick [27]) Let a ≥ 1, b ≥ 1
and g ≥ 2 be integers. Let P be a polygon in the plane. Assume that R and
B are in the interior of P and satisfies |R| = ag and |B| = bg. Then P can
be partitioned into g relatively-convex regions so that each region contains
exactly a red points and b blue points in its interior (see (2) of Fig. 23).

Red points Blue points (1)

X2

X1

X2

X1

X2

X4

X2

X1

X5

X3

X4

(2)

Figure 23: (1) A geodesic bisector of R ∪B in a polygon, where two regions
X1 and X2 are relatively-convex; (2) A balanced partition of a polygon into
5 relatively-convex regions each of which contains 2 red points and 3 blue
points.
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We now consider the following problem: how to divide a cake among
the children attending a birthday party such that each child gets the same
amount of cake and the same amount of icing. A cake is convex, has uniform
height and is iced uniformly on the top and sides, and thus we can model
the problem as follows: For a given convex set S in the plane and an integer
k ≥ 2, we want to partition S into k convex polygons so that each polygon
has the same area and the same length of the perimeter of S. If k = 2, we can
apply Ham-sandwich Theorem (continuous version) to S and the perimeter
of S, and obtain the desired bisection. For k ≥ 3, the following theorems
give affirmative answer to this problem. Note that the perimeter of a convex
set S is denoted by ∂(S).

Theorem 2.38 (Akiyama et al. [14]) Let S be a convex set in the plane
with area area(S) and perimeter length length(∂S). Then for an integer
k ≥ 3, S can be partitioned into k convex subsets so that each subset has the
same area 1

k
area(S) and the same perimeter length 1

k
length(∂S) of S (see (1)

of Fig. 24).

The partition given in the above theorem is called a perfect k-partition of
a convex set S, and it has been generalized in the following result, which is
also called a general perfect partition.

X1

(1)

X1

(2)

α2

α1 α3

α5
α4

X5

X3

X4
X2

X3
X2

X1

X5 X4

X3
X2

(3)

1
3

1
3

1
3

Figure 24: (1) A perfect 3-partition of a convex set given in Theorem 2.38;
(2) A perfect partition of a convex set given in Theorem 2.39; (3) A partition
that satisfies (i) and (ii) but not (iii) of Theorem 2.39.

Theorem 2.39 (Kaneko and Kano [78]) Let S be a convex set in the
plane with area area(S) and perimeter length length(∂S). Let n ≥ 2 be an in-
teger, and α1, α2, . . . , αn be positive real numbers such that α1+α2+· · ·+αn =
1 and 0 < αi ≤ 1

2
for all 1 ≤ i ≤ n. Then S can be partitioned into n

convex subsets X1, X2, . . . , Xn so that each Xi satisfies the following three
conditions: (i) the area of Xi is αi · area(S); (ii) the length of Xi ∩ ∂(S) is
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αi · length(∂S); and (iii) Xi ∩ ∂(S) consists of one continuous curve (see (2)
and (3) of Fig. 24)

Assume that R∪B is in the plane, and every red point has weight α and
every blue point has weight β, where α and β are positive integers such that
α > β. Then for any configuration of R ∪ B with weight α|R|+ β|B| = 2ω,
there exists a line that partitions the plane into two half-planes with weight
ω if and only if either both |R| and |B| are even or α = 2β and |B| is even
[40] (see (1) of Fig. 25). Hence the case where α = 2β is important, which is
essentially equivalent to the case where α = 2 and β = 1.

Theorem 2.40 (Buot and Kano [40]) Assume that R and B are in the
plane, every red point has weight 2 and every blue point has weight 1. Let
2|R|+ |B| = nω, where both n and ω are positive integers (see Fig. 25).
(i) If ω is even, then for any R ∪B with total weight 2|R|+ |B| = nω, there
exists a partition of the plane into n convex polygons each with weight ω.
(ii) If ω is odd and |B| ≥ n, then for any R∪B with total weight 2|R|+ |B| =
nω, there exists a partition of the plane into n convex polygons each with
weight ω. Note that if ω is odd, the condition |B| ≥ n is necessary for the
existence of such a partition.

Red points Blue points 

(2)(1)

ω=4 ω=5α=5,  β=3, ω=21

(3)

l

α=2,  β=1

Figure 25: (1) A configuration with total weight 42 which has no bisector of
weight; (2) A weight-equitable partition with even ω; (3) A weight-equitable
partition with odd ω.

2.4 Balanced Partitions by Fans

For an integer k ≥ 2, a k-fan is a partition of the plane into k open angular
sectors σ1, σ2, . . . , σk by k rays r1, r2, . . . , rk emanating from the same point
p, called an apex, where the rays are labeled in clockwise order around the
apex p, and the sector σi is determined by two consecutive rays ri and ri+1
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for every 1 ≤ i ≤ k (σk is determined by rk and rk+1 = r1). If all the sectors
σi are convex, then it is called a convex k-fan. (see (1) and (2) of Fig. 26).
Hereafter, we deal with k-fans that are not necessarily convex. If an apex
is at the infinity, then rays become parallel lines and one sector splits into
two infinite regions and these two infinite regions form one sector (see (4) of
Fig. 26).

(1) (2) (3)

r1
r3

r2r1 σ1

r3

r2

σ3

r3

r2r1

r1

r3

r2

(4)

σ2

σ3

σ1

p

pp

σ2

σ3σ2

σ3

σ1

σ2

σ1

σ2

Figure 26: (1) A 3-fan; (2) A convex 3-fan: (3) A 3-fan with far apex; (4) A
3-fan with infinity apex, which consists of 3 parallel lines.

Recall that every measure µ on the plane R2 has the following properties:
(i) µ is absolutely continuous with respect to the Lebesgue measure; and (ii)
there is a bounded domain D ⊂ R2 such that 0 < µ(D) = µ(R2) < ∞. Thus
every open set X of R2 is measurable and µ(l) = 0 for every line l. Such a
measure is called a mass distribution. If µ(R2) = 1, then such a µ is called a
probability measure.

Let n ≥ 2 be an integer, and let µ1, µ2, . . . , µn be probability measures
on the plane. Let α = (α1, α2, . . . , αk) be a vector with non-negative real
components αi such that α1 + α2 + · · · + αk = 1. We say that a k-fan with
sectors σ1, σ2, . . . , σk α-partitions a probability measure µt if µt(σi) = αi for
every 1 ≤ i ≤ k.

Theorem 2.41 (Bárány and Matoušek [22]) Let α = (α1, α2, . . . , αk)
be a vector such that αi ≥ 0 for every i and α1 + α2 · · · + αk = 1. Then
the following statements hold (see Fig. 27).

1. Any 2 probability measures can be simultaneously α-partitioned by a
2-fan for all α with k = 2. The apex of the 2-fan can be prescribed
arbitrarily (see (1)).

2. Any 3 probability measures can be simultaneously α-partitioned by a
2-fan for α = (1

2
, 1
2
) and for α = (2

3
, 1
3
) (see(2), (3)).

3. Any 2 probability measures can be simultaneously α-partitioned by a
3-fan for α = (1

3
, 1
3
, 1
3
) and for α = (1

2
, 1
4
, 1
4
) (see (4), (5)).
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4. Any 2 probability measures can be simultaneously α-partitioned by a
4-fan for α = (2

5
, 1
5
, 1
5
, 1
5
). In particular, any 2 measures can be simul-

taneously α-partitioned by a 3-fan for α = (2
5
, 2
5
, 1
5
) and for α = (3

5
, 1
5
, 1
5
)

(see (6),(7), (8)).
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µ1(σ1)=α1

µ1(σ2)=α2

µ2(σ1)=α1

µ2(σ2)=α2

σ1
σ2

µ3

µ1,

µ2,

µ2

µ1,

µ1,µ2 µ2
µ1,

µ3µ2,µ1, µ2µ1,

µ1, µ2

σ2

σ3

σ1

(1)

σ1
σ2

σ1

σ2

Figure 27: (1) A simultaneous (α1, α2)-partition of µ1 and µ2 by a 2-fan
with prescribed apex p (2) A simultaneous (1

2
, 1
2
)-partition of µ1, µ2, µ3 by

a 2-fan; (3) A simultaneous (2
3
, 1
3
)-partition of µ1, µ2, µ3 by a 2-fan; (6) A

simultaneous (2
5
, 1
5
, 1
5
, 1
5
) partition of µ1 and µ2 by a 4-fan.

The following theorem seems to follow from the statement 1 of Theo-
rem 2.41, but is independent of it since the sector σ1 with α1 < 1

2
in (1) of

Fig. 27 might be non-convex.

Theorem 2.42 (Aichholzer et al. [5]) Assume that R and B are in the
plane, and let 0 < α ≤ 1

2
be a real number. Then there exists a convex set

that contains exactly ⌈α|R|⌉ red points and ⌈α|B|⌉ blue points. Moreover,

there exists a convex set that contains exactly
⌈ |R|+1

2

⌉
red points and

⌈ |B|+1
2

⌉
blue points (see Fig. 28).

Theorem 2.43 (Bárány and Matoušek [22]) Let α = (α1, . . . , αk) be a
vector such that αi > 0 for every i and α1 + · · ·+ αk = 1. Then

1. For any k ≥ 2 and any α, there are 4 probability measures that cannot
be simultaneously α-partitioned by a k-fan (see (1) of Fig. 29) .
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Red points Blue points 

Figure 28: A convex set containing exactly ⌈α|R|⌉ = 3 red points and
⌈α|B|⌉ = 5 blue points, where α = 1

3
, |R| = 9 and |B| = 13.

2. For any k ≥ 3 and any α, there are 3 probability measures that cannot
be simultaneously α-partitioned by a k-fan (see (2) of Fig. 29).

3. For any k ≥ 5 and any α, there are 2 probability measures that cannot
be simultaneously α-partitioned by a convex k-fan.

4. For k = 4 and any α, there are 2 probability measures that cannot be
simultaneously α-partitioned by a 4-fan.

(2)(1)

µ2

µ1

µ3

µ4

µ4(σ2)=1=α2

µ2
σ2

σ3

σ1α1 α2

α3

r2
r3

r1 /

α=(α1,α2)

µ1
µ3

σ2σ1α1 α2

r2

r1

/

α=(α1,α2,α3)

µ1(σ2)=0=α2

Figure 29: (1) A configuration of 4 measures which has no simultaneous
(α1, α2)-partition by a 2-fan; (2) A configuration of 3 measures which has no
simultaneous (α1, α2, α3)-partition by a 3-fan.

In order to show the statement (1) of Theorem 2.43, it suffices to show the
non-existence for k = 2 since an α-partition by a k-fan implies an α′-partition
by a (k − 1)-fan by removing one ray.

Theorem 2.44 (Bárány and Matoušek [23]) Assume that two probabil-
ity measures µ1 and µ2 are give on the plane. Then there exists a 4-fan that
simultaneously (1

4
, 1
4
, 1
4
, 1
4
)-partitions both µ1 and µ2 (see (1) of Fig. 30).
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The discrete version of Statement 2 of Theorem 2.41 is strengthened as
follows in the case where α = (1

2
, 1
2
).

Theorem 2.45 (Živaljević [119]) Assume that 3 probability measures µ1,
µ2 and µ3 are given on the plane. Then for every positive real number α1 and
α2 such that α1 + α2 = 1, there exists a 2-fan that simultaneously (α1, α2)-
partition µ1, µ2 and µ3 (see (2) of Fig. 30).
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Figure 30: (1) A simultaneous (1
4
, 1
4
, 1
4
, 1
4
)-partition of µ1 and µ2 by a 4-

fan; (2) A simultaneous (α1, α2)-partition of µ1, µ2 and µ3 by a 2-fan (3) A
simultaneous (1

2
, 1
2
)-partition of R, B and G by a 2-fan with apex lying on a

given line l.

The discrete version of Statement 2 of Theorem 2.41 is strengthened as
follows. Also similar results on two measures defined on the plane, and on
two measures defined on the unit sphere S2 are obtained [25].

Theorem 2.46 (Bereg [25]) Assume that R, B and G are in the plane
and that |R|, |B| and |G| are all even. Moreover a line l is given in the
plane. Then there exists a 2-fan with an apex lying on l that simultaneously
(1
2
, 1
2
)-partitions all R, B and G (see (3) of Fig. 30).

We now consider a set S of points on the unit sphere S2 in the space
R3. A point set S is said to be in general position if (i) no three points of
S lie on the same great circle, and (ii) no two points of S are antipodal (i.e.
their midpoint is the sphere’s center). A k-fan on S2 is formed by a point
x ∈ S2 and k great semicircles ℓ1, ℓ2, . . . , ℓk starting from x and ending at
−x, listed in clockwise order. The spherical lune σi is determined by ℓi and
ℓi+1 for all 1 ≤ i ≤ k, where σk is determined by ℓk and ℓk+1 = ℓ1 (see (1)
of Fig. 31). The k-fan is called convex if every dihedral angle is at most π.
Given a probability measure µ on S2, the k-fan equipartitions µ if µ(σi) =

1
k

for all 1 ≤ i ≤ k.
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Theorem 2.47 (Bereg [25]) Assume that R, B and G are on the sphere
S2 in general position and |R|, |B| and |G| are all even. Then there exists
a 2-fan with apex on a given great circle that simultaneously (1

2
, 1
2
)-partitions

all R, B and G.

(1) (2) α=(    ,    ,         )
1
4
1
4

1
4

1
4

,

f(σ2) = f(σ4)

f(σ1) = f(σ3)

µ(σi)=1/4

i=1,2,3,4

x

-x l1

l2

l3

σ1

σ2

σ3

σ4

l4

x

-x
l1

l2
l3

σ1

σ2

σ3

Figure 31: (1) A 3-fan on the unit sphere S2 with three great semicircles
ℓ1, ℓ2, ℓ3 with an apex x and 3 lunes σ1, σ2, σ3; (2) A (1

4
, 1
4
, 1
4
, 1
4
)-partition of

µ that satisfies f(σ1) = f(σ3) and f(σ2) = f(σ4).

Theorem 2.48 (Blagojević and Blagojević [35]) For any two probabil-
ity measures µ1 and µ2 on the unit sphere S2, there exists a 3-fan that si-
multaneously (α, α, 1 − 2α)-partitions both µ1 and µ2 for every 0 < α < 1

2
.

Theorem 2.49 (Bárány, Blagojević and Blagojević [21]) Assume µ is
a probability measure on the unit sphere S2, and f is a continuous function
defined on the lunes in S2. Then there is a convex 3-fan with lunes σ1, σ2

and σ3 that satisfy

µ(σ1) = µ(σ2) = µ(σ3) and f(σ1) = f(σ2) = f(σ3).

Theorem 2.50 (Bárány, Blagojević and Blagojević [21]) Let µ be a prob-
ability measure on the unit sphere S2, and f be a continuous function defined
on the lunes in S2. Then
(i) there exists a convex 4-fan that equipartitions µ and satisfies f(σ1) =
f(σ3) and f(σ2) = f(σ4) (see (2) of Fig. 31).
(ii) there exists a convex 4-fan that equipartitions µ and satisfies f(σ1) =
f(σ2) and f(σ3) = f(σ4).
(iii) there exists a convex 5-fan that equipartitions µ and satisfies f(σ1) =
f(σ2) = f(σ3).
(iv) there exists a convex 5-fan that equipartitions µ and satisfies f(σ1) =
f(σ2) = f(σ4).
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The following negative result is concerning two measures defined on R2,
but the same result holds for two measures defined on S2.

Theorem 2.51 (Bárány, Blagojević and Blagojević [21]) There exist two
mass distributions µ and τ on R2 such that there is no convex 5-fan that
equipartitions µ and satisfies τ(σi) = τ(σi+1) = τ(σi+2) = τ(σi+3) for some
1 ≤ i ≤ 5, where subscripts are taken modulo 5.

3 Geometric Graphs

A graph drawn in the plane is called a geometric graph if all its edges are
straight line segments. If no two edges of a geometric graph except possibly
having a common endpoint cross, we call it a non-crossing geometric graph
or a planar straight line graph.

A graph G with colored vertices is called properly colored if every edge
joins two vertices of distinct colors. If the vertices of a properly colored
graph G are colored by two colors, then G is called an alternating graph or a
bichromatic graph.

Recall that R, B and G denote a set of red points, blue points, and
green points in the plane, respectively. We always assume that R and B
(or R, B and G) are in general position. Moreover, for k-colored point
sets Q1, Q2, . . . , Qk in the plane, we also assume that Q1, Q2, · · · , Qk are in
general position.

Theorem 2.23 on R∪B is generalized to multicolored point sets as follows.

Theorem 3.1 ([8], [86]) Let k ≥ 2 and n ≥ 1 be integers. Assume that k-
colored point sets Q1, Q2, . . . , Qk are in the plane. Let S = Q1∪Q2∪· · ·∪Qk.
If |S| = 2n and |Qi| ≤ n for every 1 ≤ i ≤ k, then (i) there exists a non-
crossing geometric properly colored perfect matching on S; and (ii) the plane
can be partitioned into n convex polygons so that each open polygon contains
exactly two points of S with distinct colors (see Fig. 32).

A matching is said to be monochromatic if every edge joins two points
of the same color. There does not always exist a non-crossing geometric
monochromatic perfect matching on R ∪ B in the plane (see Fig. 33). Thus
it is an interesting problem to determine the maximum number of points that
can be covered by this type of matching. The following theorem gives one
such answer.

Theorem 3.2 (Dumitrescu and Steiger [52]) Assume that R and B are
in the plane. Then there exists a non-crossing geometric monochromatic
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Red points 

Blue points 

Green points 

Purple points 
(1) (2)

Figure 32: (1) A non-crossing geometric properly colored perfect matching
on 4-colored point sets; (2) A partition of the plane into 8 convex polygons
each of which contains 2 points with distinct colors.

matching that covers at least 5
6
= 0.833 · · · of R ∪ B. Moreover, there exists

R ∪B for which no non-crossing geometric monochromatic matching covers
more than 155

156
= 0.9935 · · · of R ∪B.

Improving the result by Dumitrescu and Steiger [52], Dumitrescu and
Kaye obtained the following theorem.

Theorem 3.3 (Dumitrescu and Kaye [50]) Assume that R and B are
in the plane. Then there exists a non-crossing geometric monochromatic
matching that covers at least 6

7
= 0.857 · · · of R ∪ B. Furthermore, there

exists R ∪ B for which no non-crossing geometric monochromatic matching
covers more than 94

95
= 0.9894 · · · of R ∪B.

Red points 

Blue points 
(1) (2)

Figure 33: Two configurations of R ∪ B which cannot be covered by non-
crossing geometric monochromatic matchings.

Garijo et. al [56, 57] studied problems of finding non-crossing geometric
monochromatic k-factors of R ∪ B, where a monochromatic k-factor is a k-
regular graph whose edges join two vertices with the same color. In their
papers, they allowed the use of Steiner points, and what they called white
points whose positions on the plane are given in advance. Steiner and white
points have no color assigned to them, until they are matched with a red or a
blue point, inhering its color. Namely, white points have given positions and
free colors, and Steiner points have free positions and free colors. Moreover,
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every non-crossing geometric monochromatic k-factor of R ∪ B must cover
all points of R∪B but can use some white points and adding Steiner points.
Note that k ≤ 5 since the maximum degree of a regular planar graph is at
most 5. Among other things, they prove the following results:

Theorem 3.4 (Garijo et. al [56]) Assume that S = R∪B is in the plane
and |S| = n. Then
(i) n white points is always sufficient and sometimes necessary to obtain a
non-crossing geometric monochromatic perfect matching of S.
(ii) for any positive integer m, n−m white points and ⌊m

3
⌋ Steiner points are

sufficient to obtain a non-crossing geometric monochromatic perfect matching
of S (see (1) and (2) of Fig. 34).

(3)(2)

Red points Blue points Steiner  points 

(1) (4)

White  points 

Figure 34: (1) R ∪ B and 2 white points; (2) A non-crossing geometric
monochromatic perfect matching of R ∪B; (3) R ∪B; (4) Two non-crossing
geometric monochromatic Hamiltonian cycles of R and B.

Theorem 3.5 (Garijo et. al [57]) Assume that S = R∪B is in the plane
and |S| = n. Then
(i) ⌊n

2
⌋ Steiner points are sufficient and sometimes necessary to obtain two

non-crossing geometric monochromatic Hamiltonian cycles of R and B (see
(3) and (4) of Fig. 34).
(ii) 2n

5
+4 Steiner points suffice to obtain two non-crossing geometric monochro-

matic 2-factors of R and B.
(iii) n + 4, 2n and 5n Steiner points suffice to construct non-crossing geo-
metric monochromatic 3-, 4-, and 5-factors of S.

3.1 Alternating Paths

A topic that has received a lot of attention is that of finding long non-crossing
geometric alternating paths whose vertices are in R ∪ B. A path passing
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Figure 35: A non-crossing geometric alternating Hamiltonian path on R∪B.

through all the points of R ∪ B is called a Hamiltonian path on R ∪ B, see
Figure 35

For R ∪ B given in the plane in convex position, in 1990, Akiyama and
Urrutia [15] gave an O(n2)-time algorithm to evaluate whether a non-crossing
geometric alternating Hamiltonian path on R∪B exists. At around the same
time, Erdős [97] conjectured that any set R∪B with |R| = |B| = n in convex
position always has a non-crossing geometric alternating path that covers 3n

2

points of R ∪ B. This conjecture was later proven to be false by Abellanas,
Garćıa, Hurtado and Tejel [2] and Kynčl, Pach and Tóth [97].

Let us define ℓ(n) as the maximum number m such that for every R ∪B
with |R| = |B| = n in convex position in the plane, there exists a non-crossing
geometric alternating path that covers m points of R ∪ B. It is easy to see
that ℓ(n) ≥ n since for a bisector l1 of R ∪ B, we may assume that left(l1)
contains k red points (k ≥ n/2), and so right(l1) contains k blue points,
and hence there exists a non-crossing geometric path that covers these k red
points and k blue points [97] (see (1) of Fig. 36).

On the other hand, consider the configuration R∪B in (2) of Fig. 36 for
which |R| = |B| = n = 4k and a longest non-crossing geometric alternating
path covers 6k + 2 = 3n

2
+ 2 points [97]. Thus ℓ(n) ≤ 3n

2
+ 2. Actually they

obtained the following upper and lower bounds of ℓ(n).

Theorem 3.6 (Kynčl, Pach and Tóth [97]) There exist constants c, c′ >
0 such that

n+ c

√
n

log n
< ℓ(n) <

4

3
n+ c′

√
n.

They made the following conjecture.

Conjecture 3.7 ([97]) The upper bound of Theorem 3.6 is asymptotically
tight, namely, ∣∣∣ℓ(n)− 4

3
n
∣∣∣ = o(n)
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Red point 

Blue point (1) (2)

21
3

4

5 6 2k 2k

k

3k

k=2 (3)

Figure 36: (1) A non-crossing geometric alternating path that covers at least
n points of R∪B with |R| = |B| = n; (2) A configuration of R∪B with |R| =
|B| = n = 4k in which a longest non-crossing geometric alternating path
covers 6k + 2 = 3n

2
+ 2 points [97]; (3) A non-crossing geometric alternating

path that covers B′ ∪R, where B′ ⊂ B.

Theorem 3.8 (Kano and Kaneko [76]) Assume that R∪B in the plane
and |R| = n ≥ 3.
(i) If |B| ≥ (n + 1)(2n − 4) + 1, then we can find a subset B′ ⊂ B with
n points such that there exists a non-crossing geometric alternating path on
R ∪B′ (see (3) of Fig. 36).
(ii) There exists a configuration of R ∪ B with |B| = n2

16
+ n

2
− 1 for which

there is no non-crossing geometric alternating path on R∪B′ for any B′ ⊂ B
with |B′| = n.

Cibulka et al. [42] showed that if R ∪B forms a double-chain, then there
exists a non-crossing geometric alternating Hamiltonian path on R ∪B (see
Fig. 37).

Theorem 3.9 (Cibulka et al. [42]) Assume that R ∪ B lies on a double-
chain C1 ∪ C2, | |R| − |B| | ≤ 1 and |Ci ∩ (R ∪ B)| ≥ 1

5
|R ∪ B| for i = 1, 2.

Then there exists a non-crossing geometric alternating Hamiltonian path on
R ∪B (see Fig. 37).

The alternating path problem has also been studied for the case when
each edge can have one bend, that is, when an edge can be a polygonal line
consisting of two line segments with a common endpoint.

Theorem 3.10 (Di Giacomo el al. [49]) Assume that R ∪ B is in the
plane and |R| = |B|. Then there exists a non-crossing Hamiltonian alter-
nating path on R ∪B each of whose edges has at most one bend.

34



Red points Blue points 

C1

C2

Figure 37: R ∪ B that forms a double-chain C1 ∪ C2, and a non-crossing
geometric alternating path that covers R ∪B.

3.2 Hamiltonian Cycles

A cycle passing through all points of a set S is called a Hamiltonian cycle
on S. Allowing for crossings among the edges of a geometric graph, we have
the following result:

Theorem 3.11 (Kaneko, Kano and Yoshimoto [83]) Assume that R∪
B is in the plane and |R| = |B| = n ≥ 2. Then there exists a geometric
alternating Hamiltonian cycle on R ∪ B that has at most n − 1 crossings
(see (1) and (2) of Fig.38). This upper bound on the number of crossings is
sharp.

Red points 

Blue points (1) (2)

Figure 38: (1) A geometric alternating Hamiltonian cycle on R ∪ B with
3 crossings; (2) A geometric alternating Hamiltonian cycle on R ∪ B with
|R| − 1 crossings.

A geometric graph is called a 1-plane if every its edge is crossed by at
most one other edge. The problem of finding 1-plane alternating geometric
paths and cycles on R ∪ B was first studied by Claverol et.al [44], and their
results were improved in the recent paper by Claverol et.al [43]. Thus we
mention only the recent result in [43].

Let τ(R,B) denote the number of unordered pairs {x, y} of vertices of
conv(R ∪ B) such that one of {x, y} is red and the other is blue, and xy is
an edge of conv(R ∪ B) (see Fig. 39). A run of R ∪ B is a maximal set of
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consecutive points of the same color on the boundary of conv(R ∪B). Then
τ(R,B) is equal to the number of runs of R∪B if the vertices of conv(R∪B)
are not monochromatic, otherwise τ(R,B) = 0 and the number of runs is
one.

Red points Blue points 

Figure 39: R ∪ B with |R| = |B| = 8 and τ(R,B) = 6, and a 1-plane
Hamiltonian alternating cycle on R ∪B with 2 crossings.

Theorem 3.12 (Claverol et al. [43]) Assume that R ∪ B is in the plane
and that |B| = |R| = n ≥ 2. Then there exists a 1-plane Hamiltonian
alternating cycle on R ∪B with at most

n−max

{
τ(R,B)

2
, 1

}
crossings (see Fig. 39).

3.3 Alternating Paths in k-Colored Point Sets

While obtaining sharp bounds on the length of non-crossing geometric alter-
nating paths for 2-colored point sets in convex position has been elusive so
far, the problem for 3-colored point sets (and in general k-colored, k odd)
has been solved in full;

Theorem 3.13 (Merino, Salazar and Urrutia [103]) Assume that R∪
B ∪G is in the plane in convex position and that |R| = |B| = |G| = n. Then
there exists a non-crossing geometric alternating path of length at least 2n+1.
This bound is sharp (see Fig. 40).

For k-colored point sets in convex position, they proved the following:

Theorem 3.14 (Merino, Salazar and Urrutia [103]) Let k ≥ 3 be an
integer. Assume that a set Q1∪Q2∪ · · · ∪Qk of k-colored point sets is in the
plane in convex position, and that |Q1| ≥ · · · ≥ |Qk| and |Q1|+· · ·+|Qk| = n.
Then there exists a non-crossing geometric alternating path of length at least
n− |Q1|.
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Red points 

Blue points 

Green points 

Figure 40: A point configuration achieving the bounds in Theorem 3.13.

3.4 Spanning Trees

One of the first results on bichromatic spanning trees for bicolored point sets
is the following.:

Theorem 3.15 (Abellanas et al.[1]) Assume that R ∪ B is in the plane
and |R| = |B|. Then there exists a non-crossing geometric bichromatic span-
ning tree on R ∪B having maximum degree at most O(log |R|).

This result was improved by Kaneko.

Theorem 3.16 (Kaneko [72]) Assume that R∪B is in the plane and |R| =
|B|. Then there exists a non-crossing geometric bichromatic spanning tree
on R ∪ B whose maximum degree is at most 3. The upper bound 3 is sharp
(see (1) of Fig. 41).

The following theorem is a generalization of the above theorem, and solves
the outstanding problem on this topic.

Theorem 3.17 (Biniaz, Bose, Maheshwari and Smid [34]) Assume that
R ∪ B is in the plane and |R| ≤ |B|. Then there exists a non-crossing ge-
ometric bichromatic spanning tree on R ∪ B whose maximum degree is at
most

max

{
3,

⌈
|B| − 1

|R|

⌉
+ 1

}
.

This upper bound is sharp (see (2) of Fig.41).

Theorem 3.18 (Hoffmann and Tóth [65]) Let S be a set of colored points
in the plane in general position, and let H be a non-crossing geometric prop-
erly colored disconnected graph on S having no isolated vertices. Then there
exists a non-crossing properly colored geometric connected graph G on S that
is obtained from H by adding some new edges joining two vertices with dis-
tinct colors and satisfies degG(v) ≤ degH(v)+2 for every vertex v. Moreover,
this degree condition is tight (see Fig. 42).
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Red points 

Blue points 
(1) (2)

Figure 41: (1) A non-crossing geometric bichromatic spanning tree on R∪B
with maximum degree 3; (2) A non-crossing geometric bichromatic spanning

tree on R ∪B with maximum degree 4 =
⌈
|B|−1
|R|

⌉
+ 1.

A non-crossing geometric properly colored connected graph G given in
Theorem 3.18 is called an encompassing graph of H.

(3)(2)

Red points Blue points Green points 

(1)

H G

M={     }

Figure 42: (1) A non-crossing geometric properly colored disconnected graph
H without isolated vertices, and an encompassing graph G of H; (2) A
non-crossing geometric bichromatic matching M for which there exists no
non-crossing geometric bichromatic Hamiltonian path containing M , which
implies the degree condition degG(v) ≤ degH(v) + 2 in Theorem 3.18 is
necessary; (3) A configuration which shows the necessity of the condition
that H has no isolated vertex.

If R ∪ B with |R| = |B| is given in the plane, then by Theorem 2.23,
there is a non-crossing geometric bichromatic perfect matching M on R ∪
B. Applying Theorem 3.18 to M , we can obtain a non-crossing geometric
bichromatic spanning tree on R∪B with maximum degree at most 3. Namely,
another proof of Theorem 3.16 is obtained. Moreover, Theorem 3.17 is proved
by using Theorem 3.18.

For a given R ∪ B in the plane, we say that a graph G covers R ∪ B
with bichromatic edges if there exists a non-crossing geometric graph which
is isomorphic to G, whose vertex set is R ∪B and each of whose edges joins
a red point to a blue point. Analogously, for a fixed graph G of k vertices,
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we say that R ∪ B has a bichromatic G-covering or can be G-covered with
bichromatic edges if |R ∪B| = t · k for some integer t ≥ 1, and the graph Gt

resulting from the union of t copies of G covers R ∪B.

Theorem 3.19 (Abrego et al. [3]) Let g ≥ 0 and h ≥ 0 be integers such
that g + h ≥ 1. Assume that R ∪ B is in the plane in convex position,
|R| = 3g + h and |B| = g + 3h. Then at least |R ∪ B| − 4 points of R ∪ B
can be K1,3-covered with bichromatic edges. This bound is best possible (see
(2) of Fig. 43).

bichromaitc

Theorem 3.20 (Abrego et al. [3]) Assume that R and B are in the plane
and that |B| ≤ |R| ≤ 3|B|. Then at least 8

9
(|R ∪ B| − 8) points can be K1,3-

covered with bichromatic edges (see (1) of Fig. 43).

(1) (2)

Red points 

Blue points 

Figure 43: (1) For R ∪ B in the plane, at least 8
9
(|R ∪ B| − 8) points are

K1,3-covered with bichromatic edges; (2) For R ∪ B in convex position with
|R| = |B| = 3 · 3 + 3, at least |R ∪ B| − 4 points are K1,3-covered with
bichromatic edges.

3.5 Monochromatic Spanning Trees on Colored Point
Sets

Given a point set S in the plane, a non-crossing geometric spanning tree on
S is briefly called an S-spanning tree. Tokunaga [117] studied the following
problem: Given a set R ∪ B in the plane, find an R-spanning tree and a B-
spanning tree such that the number of intersections of their edges is as small
as possible. Recall that τ(R,B) denotes the number of unordered pairs {x, y}
of vertices of conv(R∪B) such that one of {x, y} is red and the other is blue,
and xy is an edge of conv(R ∪B).
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Theorem 3.21 (Tokunaga [117] ) Assume that R and B are in the plane.
Then there exist an R-spanning tree and a B-spanning tree whose edges in-
tersect exactly

max
{τ(R,B)− 2

2
, 0
}

times. This is optimal (see Fig. 44).

Red points 

Blue points 

τ(R,B)=6

Figure 44: R∪B with τ(R,B) = 6, and an R-spanning tree and a B-spanning
tree, whose edges intersect 2 times.

The following result concerns the problem of finding non-crossing geo-
metric monochromatic spanning trees on multicolored point sets.

Theorem 3.22 (Kano, Merino and Urrutia [85]) Let k ≥ 3 be an inte-
ger. Assume that k-colored point sets Q1, Q2, . . . , Qk are in the plane. Then
for each Qi, 1 ≤ i ≤ k, we can find a Qi-spanning tree Ti, i = 1, . . . , k, such
that the total number of intersections among the edges of T1, T2, . . . , Tk is at
most

(k − 1)

(
n− k

2

)
, where |Q1 ∪ . . . ∪Qk| = n.

This bound is tight within a factor 3
2
from the optimal solution (see [98]).

In addition, they also proved that if |R ∪ B| = n, then the minimum
weight spanning trees of R and B intersect at most 8n times, where the
weight of an edge is its length, and the weight of a tree is the sum of the
weights of its edges. They posed the following problem that remains open:

Problem 3.23 (Kano, Merino and Urrutia [85] ) Is it true that the edges
of the minimum weight spanning trees of any two point sets R and B with
|R ∪B| = n intersect at most 2n− c times for some constant c.

Given a set S of even number of points in the plane, let MS denote a
geometric perfect matching on S. Then the weight of a matching of MS
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is defined to be the sum of the lengths of its edges. Given R and B with
|R| = 2r, and |B| = 2b, let MR and MB be the minimum weight perfect
matchings on R and B, respectively. Then MR and MB are non-crossing,
and the following holds:

Theorem 3.24 (Merino, Salazar and Urrutia [104]) Assume that R and
B are in the plane, |R| = 2r and |B| = 2b. Then the edges of MR and MB

intersect at most r + b− 1 times. The bound is tight (see Fig. 45).

MB={       }MR={         }

Figure 45: Two minimum weight matching MR and MB on R and B, respec-
tively, which intersect 7 times.

The intersection graph of MR and MB is the graph whose vertices are
the edges of MR and MB, two of which are adjacent if they are incident to a
common vertex. The proof of Theorem 3.24 follows from the next Lemma:

Lemma 3.25 (Merino, Salazar, and Urrutia [104]) The intersection graph
of MR and MB is a forest (i.e., every component is a tree).

For multicolored point sets in the plane, we have the following result.

Theorem 3.26 (Merino, Salazar and Urrutia [104]) Let k ≥ 2 be an
integer. Assume that k-colored point sets Q1, Q2, . . . , Qk are in the plane,
and that |Qi| is even for every 1 ≤ i ≤ k and |Q1| + |Q2| + · · · + |Qk| = 2n.
Let Mi be a minimum weight perfect matching on Qi for every 1 ≤ i ≤ k.
Then the edges of M1 ∪ M2 ∪ · · · ∪ Mk intersect at most (k − 1)n − k(k−1)

2

times. The bound is sharp.

4 Empty Polygons and Balanced Lines

In this section, we first consider problems on monochromatic empty polygons
(i.e., monochromatic holes) on colored point sets in the plane. Recall that
R, B and G always denote a set of red points, a set of blue points and a set
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of green points, respectively. Moreover, we always assume that R and B (or
R, B and G) are in the plane in general position.

Let S be a set of points in the plane in general position, and P be a
polygon whose vertices are contained in S. If P has k-vertices, then P is
called a k-gon. Of course, a 3-gon and 4-gon are also called a triangle and
quadrilateral, and so on. A polygon P is said to be empty if P contains no
point of S in its interior. An empty k-gon is often called a k-hole. Note that
in some papers a k-hole needs to be convex, but in this paper, a k-hole might
be non-convex.

Let X be a subset of S. Then X is called empty if conv(X) is empty
(i.e., no point of S lies in the interior of conv(X)), and X is said to be
convex if the set of vertices of conv(X) is X (see Fig. 46). An empty convex
subset X of S with |X| = k is often called a convex k-hole. A family of
empty subsets {Y1, Y2, . . . , Yk} of S is called compatible if any two conv(Yi)
and conv(Yj) have disjoint relative interiors, that is, if conv(Yi) and conv(Yj)
have no common interior point (see (2) of Fig. 46).

It is not hard to show that every R ∪ B of 10 points has an empty
monochromatic triangle from the fact that every set of 10 points contains
an empty convex pentagon. Grima et al. [61] showed that 9 points are
necessary and sufficient for every R ∪ B to have a monochromatic empty
triangle. The following theorems can be considered as variations of Erdős-
Szekeres Theorem for colored point sets in the plane.

Red points Blue points 

(1) (2)

S={     }

(3)

Figure 46: (1) A point set S, a non-convex empty quadrilateral (i.e., a non-
convex 4-hole) drawn with lines, and a convex empty quadrilateral (i.e., a
convex 4-hole) drawn with bold lines; (2) Four compatible empty monochro-
matic triangles in R ∪B; (3) Two balanced 4-holes in R ∪B.

Theorem 4.1 (Aichholzer et al. [9]) Assume that R and B are in the
plane and |R ∪ B| = n. Then R ∪ B has Ω(n5/4) empty monochromatic
triangles, namely, R ∪ B has at least cn5/4 empty monochromatic triangles
for sufficiently large n and for a constant positive real number c.
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They conjectured the following:

Conjecture 4.2 (Aichholzer et al. [9]) Assume that R and B are in the
plane and |R∪B| = n. Then R∪B has Ω(n2) empty monochromatic triangles.

Theorem 4.3 (Pach and Tóth [110]) Assume that R and B are in the
plane and that |R ∪B| = n. Then R ∪B has Ω(n4/3) empty monochromatic
triangles.

Theorem 4.4 (Devillers, Hurtado, Károlyi and Seara [47]) Assume that
R and B are in the plane and |R∪B| = n ≥ 5. Then R∪B has at least

⌈
n
4

⌉
−2

compatible monochromatic empty triangles (see (2) of Fig. 46). Moreover,
this bound is tight up to a constant factor.

For 3-colored point sets, the following negative result holds.

Theorem 4.5 (Devillers, Hurtado, Károlyi and Seara [47]) There ex-
ists an arbitrarily large set R∪B∪G in the plane that has no monochromatic
empty triangle.

Red points 

Blue points 

Figure 47: A set R ∪B with 18 points having no monochromatic 4-hole.

We next consider empty monochromatic quadrilaterals (i.e., monochro-
matic 4-holes). Devillers et al. [47] obtained R ∪ B with 18 points that
has no monochromatic 4-hole (see Fig. 47). Huemer and Seara [67] found
R ∪ B with 36 points that has no monochromatic convex 4-hole. Moreover,
Koshelev [95] obtained another R∪B of 46 points having no monochromatic
convex 4-hole. Devillers et al. [47] proposed the following conjecture on
monochromatic quadrilaterals.

Conjecture 4.6 (Devillers et al. [47]) Every R∪B in the plane with suf-
ficiently large number of points contains a monochromatic convex 4-hole.

43



The above conjecture remains open, but the following theorem was ob-
tained.

Theorem 4.7 (Aichholzer et al. [11]) Every R∪B in the plane with |R∪
B| ≥ 2760 contains a monochromatic 4-hole.

For given R and B in the plane, if a 4-hole has 2 red vertices and 2 blue
vertices, then it is called a balanced 4-hole (see (3) of Fig. 46). The following
theorem shows the existence of balanced 4-holes.

Theorem 4.8 (Bereg et. al [29]) Assume that R and B are in the plane
and |R| = |B| = n. Then R ∪ B has at least n2−4n

12
balanced 4-holes. This

bound is tight up to a constant factor.

If we consider 5-holes, the situation changes as the following theorem
shows.

Theorem 4.9 (Devillers, Hurtado, Karolyi, Seara [47]) For every in-
teger n, there exists R ∪ B in the plane with |R ∪ B| = n that contains no
convex monochromatic 5-hole.

We now turn our attention from holes to balanced lines. Assume that R
and B are in the plane and |R| = |B|. In this case, a line l is called a balanced
line if it passes through one red point and one blue point and left(l) contains
the same number of red points as blue points, that is, left(l) contains k red
points and k blue points for some integer 1 ≤ k ≤ |R|−1 (see (1) of Fig. 48).

Red points Blue points (3)(1) (2)

l2

l2l1 l2l1

l

l1

Figure 48: (1) R ∪ B with |R| = |B| and two balanced lines l1 and l2; (2)
R ∪ B with |B| = |R| + 4 and two generalized balanced lines l1 and l2; (3)
R∪B with |B| = |R|+4 which is separated by a line l, and two generalized
balanced lines l1 and l2.

The following theorem by Pach and Pinchasi [109] settled a conjecture of
George Baloglou [20].
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Theorem 4.10 (Pach and Pinchasi [109]) Assume that R and B are in
the plane and |R| = |B| = n. Then R∪B has at least n balanced lines. This
bound is best possible.

Assume that R and B are in the plane and |B| = |R| + 2δ for some
positive integer δ. In this case, a line is called a generalized balanced line if
it passes through one red point and one blue point and left(l) contains k red
points and k + δ blue points for some integer 1 ≤ k ≤ |R| − 1 (see (2) and
(3) of Fig. 48). For generalized balanced lines, the following theorem was
obtained by Sharir and Welz [113] and by Orden, Ramos and Salazar [105]
with different proof techniques.

Theorem 4.11 ([113], [105]) Assume that R and B are in the plane and
|R| = n and |B| = n + 2δ, where δ ≥ 0 is an integer. Then R ∪ B has at
least n generalized balanced lines. Equality holds if R and B are separated by
a line (see (3) of Fig. 48).

5 Miscellaneous Topics

In this section, we collect some research topics on colored point sets in the
plane, which are not dealt with in previous sections. Recall that R, B and
G always denote a set of red points, a set of blue points and a set of green
points, respectively. Moreover, we assume that R and B (or R, B and G)
are in the plane in general position unless explicitly stated otherwise.

5.1 Compatible Graphs

For two non-crossing geometric graphsH1 andH2 on the same point set in the
plane, ifH1∪H2 has no crossing, then we say thatH1 is compatible with H2 or
H1 and H2 are compatible. Assume that R∪B is in the plane and |R| = |B|.
Then there are non-crossing geometric alternating perfect matchings on R∪
B, or simply referred to as RB-matchings (see Fig. 49). The transformation
graph of RB-matchings contains one vertex for each RB-matching and an
edge joining two such vertices if and only if the corresponding two RB-
matchings are compatible.

Theorem 5.1 (Aloupis, Barba, Langerman and Souvaine [19]) Assume
that R and B are in the plane and |R| = |B| = n. Then the transformation
graph of RB-matchings is connected.
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(1) (2)

(4) (5)

Ma=M1 Mb=M3M2

M1 M2 M2 M3

(3)

Figure 49: (1) A RB-matching Ma = M1; (3) A RB-matching Mb = M3; (2)
A RB-matching M2 such that M1 and M2 are compatible (see (4)) and M2

and M3 are compatible (see (5)).

In other words, Theorem 5.1 tells us that given any two RB-matchingsMa

and Mb on R∪B, there exists a sequence of RB-matchings Ma = M1,M2, . . .,
Mk = Mb such that Mi∪Mi+1 contains no crossing (see Fig. 49). In [19], the
authors introduced the problem of determining the diameter of the transfor-
mation graph of R ∪B. This was solved as follows:

Theorem 5.2 (Aichholzer el al. [7]) The diameter of the transformation
graph of RB-matchings is at most 2n, where |R| = |B| = n. The bound is
asymptotically tight.

5.2 Polygon Enclosing or Excluding Monochromatic
Points

We say that a polygon P encloses a point set S if all the points of S belong
to the interior of P . Given R and B in the plane, we consider a problem
of finding a polygon with vertex set R that encloses as many blue points
as possible. If there is a polygon with vertex set R that encloses B, then
B is contained in the interior of conv(R). However this condition is not
sufficient (see (1) and (3) of Fig. 50). For this problem, the following results
are obtained.

Theorem 5.3 (Czyzowciz, Hurtado, Urrutia and Zaguia [46]) Assume
that R and B are in the plane, and that B is contained in the interior of
conv(R). Then there exists a polygon with vertex set R that encloses at least
|B|
2

blue points.
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The following theorem and the above theorem are independent of each
other.

Theorem 5.4 (Hurtado et al. [69]) Assume that R and B are in the plane,
and that B is contained in the interior of conv(R∪B). If the number of ver-
tices of conv(R ∪ B) is greater than |B|, then there is a polygon with vertex
reset R that encloses B (see (2) of Fig. 50).

R={    }  B={    }(2) (3)(1)

Figure 50: (1) No polygon with vertex set R encloses B; (2) A polygon with
vertex set R encloses B; (3) Every polygon with vertex set R encloses exactly
5 blue points.

Theorem 5.5 (Hurtado et al. [69]) There are configurations of R ∪ B
that satisfy the following two conditions: (i) B belongs to the interior of

conv(R); and (ii) any polygon with vertex set R encloses exactly |B|+1
2

points
of B.

In the above theorems, we consider a problem of finding a red polygon
that encloses many blue points. We next consider the dual problem, namely,
we want to find a red polygon that contains a small number of blue points.
In particular, we want to find a red polygon whose interior contains no blue
point, that is, it excludes all blue points (and possibly some red points in the
interior of conv(R), see Fig. 51). The following theorem says that finding
such red polygon is always possible as long as the number of red points is
large.

Theorem 5.6 (Fulek, Keszegh, Moŕıc and Uljarev́ıc [54]) Let b ≥ 1
and n ≥ 1 be integers. Then there exists a number K(b) = O(b4) that
possesses the following property. Assume that R and B are in the plane,
|B| = b, |R| = n + k, k ≥ K(b), and that conv(R) contains B and k red
points in its interior. Then there exists a subset R′ ⊂ R such that some
polygon with vertex set R′ excludes B and R′ contains all the vertices of
conv(R) (see Fig. 51).
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Red points 

Blue points 

Figure 51: A subset R′ ⊂ R such that a polygon with vertex set R′ excludes
B and R′ includes all the vertices of conv(R).

Given R ∪ B in the plane, if the plane is partitioned into some convex
polygons so that for each polygon P , the data points in P are either mostly
red points or mostly blue points, then we say that R ∪ B is well-separated.
Otherwise, we have an uniform distribution. For this problem, some formal
definition and results in relation to this problem are listed by by Berge et al.
[30] and Dı́az-Báñez et al. [48].

5.3 Bichromatic Lines

Hereafter we deal with R ∪ B in the plane, which is not in general position.
If a line l passes through at least two points of R∪B, then we say that R∪B
determines l. A line is said to be bichromatic if it passes through at least
one red point and at least one blue point (see Fig. 52). On the other hand,
a line that passes through at least two points of R ∪ B and passes through
only points of the same color is called monochromatic.

Red points 

Blue points 

l2

(2)

l4

l3

l1

l6

l5

(1)

Figure 52: (1) Two monochromatic lines (bold lines) and 4 bichromatic lines;
(2) A set R ∪ B determines 6 bichromatic lines. No line passes through
precisely one red point and one blue point.

The first result on this topic is on monochromatic lines, and it can be
considered as color type of Gallai-Sylvester Theorem, which says that a set
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S of points in the plane which is not collinear determines a line which passes
through exactly two points of S. Also it is easy to see that Gallai-Sylvester
Theorem implies that S determines at least |S| lines (Erdős-de Bruijn The-
orem).

Theorem 5.7 (Motzkin [101]) Assume that R∪B is in the plane and not
collinear. Then R ∪ B determines a monochromatic line (see (1) of Fig. 52
).

We next consider the number of bichromatic lines.

Theorem 5.8 (Pach and Pinchasi [108]) Assume that R ∪ B is in the
plane, |R| = |B| = n ≥ 2 and R ∪ B is not collinear. Then there exist at
least n

2
bichromatic lines that passes through at most two red points and at

most two blue points. Moreover, there exist at least n + 1 bichromatic lines
(see (1) of Fig. 52).

Theorem 5.9 (Pach and Pinchasi [108]) Assume that R ∪ B is in the
plane, |R| = n, |B| = cn and R ∪ B is not collinear, where c ≥ 1. Then the
number of bichromatic lines passing through at most 8c points is at least

1

25c2
× (the total number of lines determined by R ∪B).

In particular, there exists at least one such line.

The next theorem generalizes Theorem 5.7.

Theorem 5.10 (Kleitman and Pinchasi [94]) Assume that R ∪ B is in
the plane and that neither R nor B is collinear. If |R| = n and n − 1 ≤
|B| ≤ n, then R ∪ B determines at least |R ∪ B| − 3 bichromatic lines (see
(2) of Fig. 52).

Conjecture 5.11 (Kleitman and Pinchasi [94]) Assume that R ∪ B is
in the plane and that neither R nor B is collinear. If |R| = n and n − 1 ≤
|B| ≤ n, then R ∪B determines at least |R ∪B| − 1 bichromatic lines.

A line passing through i red points and j blue points such that i+ j ≥ 2
and |i− j| ≤ 1 is called an equichromatic line. The following theorem proved
Conjecture 5.11 for sufficiently large |R|.

Theorem 5.12 (Purdy and Smith [111]) Assume that R ∪ B is in the
plane, |R| = n, |B| = n − k for k ∈ {0, 1}, and that neither R nor B is
collinear. If n ≥ 78 + k, then the number of equichromatic lines is at least
2n−k−1 = |R∪B|−1. In particular, Conjecture 5.11 is true for all n ≥ 79.
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Theorem 5.13 (Purdy and Smith [111]) Assume that R ∪ B is in the
plane, |R| = n, |B| = n − k for k ≥ 0, and that R ∪ B is not on a line.
Let t be the total number of lines determined by R ∪B. Then the number of
equichromatic lines is at least 1

4
(t+ 2n+ 3− k(k + 1)).

By the Erdős-de Bruijn Theorem, which says t ≥ 2n − k, where t is
given in the above theorem, we have the following corollary from the above
theorem.

Corollary 5.14 (Purdy and Smith [111]) Let R and B be the same as
Theorem 5.13. Then the number of equichromatic lines is at least n+ 1

4
(3−

k(k + 2)). If k ∈ {0, 1}, then the number of equichromatic lines is at least
n+ 1− k.

6 Colored Point Sets in the Plane Lattice

In this section we consider colored point sets in the integer plane lattice Z2.
For simplicity, we will refer to R2 and Z2 as the plane and the plane lattice,
respectively. A set S of points in the plane lattice is said to be in general
position if every vertical line or horizontal line contains at most one point of
S (see Fig. 53). An L-line with corner q ∈ R2 consists of a horizontal half-
line and a vertical half-line emanating from the common apex q (see Fig. 53).
It will be shown that L-lines and L-line segments in the plane lattice play
similar roles as lines and line segments, respectively, in the plane.

Recall that R, B and G always denote a set of red points, a set of blue
points and a set of green points, respectively. Moreover, we always assume
that R and B (or R, B and G) are in the plane lattice in general position.
For R and B in the plane lattice, a bichromatic matching on R ∪B consists
of L-line segments joining red points to blue points.

Theorem 6.1 (Kano and Suzuki [87]) Assume that R and B are in the
plane lattice and |R| = |B|. Then there exists a non-crossing bichromatic
perfect matching on R ∪B with L-line segments (see (2) of Fig. 53).

An L-line partitions the plane into two regions. When we look for an
L-line having some property, we often consider an L-line whose corner is not
in the plane lattice so that the L-line does not pass through any point of the
plane lattice.

Theorem 6.2 (Uno, Kawano and Kano [118]) Assume that R and B
are in the plane lattice, and that |R| = 2m and |B| = 2n for some inte-
gers m,n ≥ 1. Then there exists an L-line in the plane that bisects both R
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(2)(1) (3)S={     }

q

Figure 53: (1) A point set S in the plane lattice Z2 in general position, an
L-line with corner q ∈ R2, and an L-line segment joining two points of S; (2)
A non-crossing bichromatic perfect matching on R∪B with L-line segments;
(3) An L-line in the plane that bisects R and B in the plane lattice.

and B (see (3) of Fig. 53). Namely, each region determined by the L-line
contains exactly m red points and n blue points.

If the plane is partitioned into some regions by horizontal half-lines and
vertical half-lines, then we call such a partition an orthogonal partition (see
Fig. 54). Note that a half-line might be a line or a line segment. A set X
in the plane is said to be orthogonally convex if the intersection of X with
every horizontal or vertical line is connected (see Fig. 56). Theorem 6.2 is
generalized as follows.

Theorem 6.3 (Orthogonal Balanced Partition (discrete), Bereg [26])
Let m,n ≥ 1 and k ≥ 2 be integers. Assume that R and B are in the plane
lattice, and |R| = km and |B| = kn. Then there exists a partition of the
plane into k orthogonally convex regions by at most k − 1 horizontal half-
lines and at most k − 1 vertical half-lines such that every region contains
exactly n red points and m blue points (see Fig. 54).

Theorem 6.4 (Orthogonal Balanced Partition (continuous), Bereg
[26]) Let k ≥ 2 be an integer and µ1 and µ2 be two mass distributions
on the plane. Then there exists a partition of the plane into k orthogonally
convex regions X1, X2, . . . , Xk by at most k − 1 horizontal half-lines and at
most k − 1 vertical half-lines such that

µ1(Xi) =
µ1(R2)

k
and µ2(Xi) =

µ2(R2)

k
for all 1 ≤ i ≤ k.
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Figure 54: An orthogonal balanced partition of the plane lattice into 6 convex
regions by 5 horizontal half-lines and 3 vertical half-lines.

It is a corollary of Theorem 2.41 that two measures defined on the plane
can be simultaneously bisected by a 2-fan whose apex is a given point in the
plane. The next theorem shows a similar result holds for the plane lattice
using L-rays, where an L-ray is an L-line emanating from a point called an
apex (see Fig. 55).

Theorem 6.5 (Kano and Suzuki [87]) Assume that R and B are in the
plane lattice, and that |R| = 2m and |B| = 2n for integers m ≥ 1 and n ≥ 1.
Let p be a point in the plane but not in the plane lattice. Then there exist
two L-rays emanating from p that bisect both R and B (see Fig. 55).

(1) (2)

r2

r1

p

p

p

p

Figure 55: (1) Partitions of the plane by two L-rays emanating from the apex
p. (2) Two L-rays r1 and r2 emanating from the given apex p that bisect
both R and B.

Recall that a set X in the plane is said to be orthogonally convex if the
intersection of X with every horizontal or vertical line is connected. The
orthogonal convex hull of a point set S is the intersection of all connected
orthogonally convex sets including S (see (1) and (2) of Fig. 56).
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Theorem 6.6 (Bereg et al. [31]) Assume that R, B and G are in the
plane lattice and |R| = |B| = |G| = n. If all the vertices of the orthogonal
convex hull of R ∪ B ∪G have the same color, then there exists a nontrivial
balanced L-line in the plane, namely, there exists an integer 1 ≤ k ≤ n − 1
and an L-line L∗ such that a region determined by L∗ contains exactly k
points of each color (see Fig. 56).

Red points Blue points 

(3)

(1) (2)

Green points 

S={    }  

L*

Figure 56: (1) The orthogonal convex hull of S; (2) Two non-orthogonal
convex sets ;(3) R ∪ B ∪G satisfying the conditions of Theorem 6.6 and its
balanced L-line L∗.

The next theorem shows that a similar result on an R-spanning tree and
a B-spanning tree given in Theorem 3.21 holds for the plane lattice. Here
we define τ ∗(R,B) by using the minimum rectangle containing R ∪ B but
not the orthogonal convex hull of R∪B in the plane lattice. For R and B in
the plane lattice, let τ ∗(R,B) denote the number of unordered pairs {x, y}
of points of R∪B such that one of {x, y} is red and the other is blue, and x
and y are on the consecutive edges of the minimum rectangular containing
R ∪B (see Fig. 57). Then τ ∗(R,B) is even and 0 ≤ τ ∗(R,B) ≤ 4.

Theorem 6.7 (Kano and Suzuki [87]) Assume that R and B are in the
plane lattice. If τ ∗(R,B) ≤ 2, then there exist two non-crossing spanning
trees on R and B, respectively, whose edges are L-line segments and whose
maximum degrees are at most 3. If τ ∗(R,B) = 4, then there are two such
spanning trees having one crossing (see Fig. 57).

In the following theorem, each edge of a path is not necessary an L-line
segment, but is a shortest path in the plane that connects two of its end-
points and consists of vertical and horizontal line segments in the plane,
which is called an orthogeodesic path.
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(1) (2)τ∗(R,B)=4 τ∗(R,B)=2

Figure 57: (1) R and B with τ ∗(R,B) = 4, and two spanning trees on R and
B, respectively, which have one crossing; (2) R and B with τ ∗(R,B) = 2,
and two spanning trees on R and B, respectively, which have no crossing.

(1)

Figure 58: A non-crossing alternating Hamiltonian path on R ∪ B in the
plane each of whose edges is orthogeodesic and has at most two bends

Theorem 6.8 (Di Giacomo et al. [58]) Assume that R and B are in the
plane lattice and that | |R| − |B| | ≤ 1. Then there exists a non-crossing
alternating Hamiltonian path on R∪B each of whose edges is an orthogeodesic
path in the plane and has at most two bends (see Fig.58).

7 Measures on Higher Dimensional Spaces

In this section, we collect some results on measures defined on a higher
dimensional space Rd, d ≥ 3, which are directly related to some results given
in the previous sections. Thus we do not deal with results on the following
topics: colorful version of Helly-type theorem and of Tverberg’s theorem and
others. Many theorems in this section are proved using topological methods,
and for these methods, the reader is referred to the paper [120] by Živaljević,
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the book “Using the Borsuk-Ulam Theorem” [100] by Matoušek, and others.
For simplicity and for our discrete geometry, we assume that every mea-

sure µ defined on Rd, d ≥ 3, satisfies the following conditions: (i) µ is
absolutely continuous with respect to the Lebesgue measures; and (ii) there
is a bounded domain D ⊂ Rn such that 0 < µ(D) = µ(Rn) < ∞. Thus every
open set X of Rn is measurable and µ(h) = 0 for every hyperplane h. Such a
measure is called a mass distribution. Moreover, if µ also satisfies µ(Rd) = 1,
then µ is called a probability measure. In many results, however, there is no
essential difference between mass distributions and probability measures.

The following theorem is the Ham-sandwich Theorem in higher dimen-
sional space.

Theorem 7.1 (Ham-sandwich Theorem (continuous), Stone and Tukey
[116], Steinhaus [115]) Let d ≥ 3 be an integer. Assume that d mass dis-
tributions µ1, µ2, . . . , µd are defined on Rd. Then there exists a hyperplane h
such that each half-space H defined by h satisfies

µi(H) =
µi(Rd)

2
for all 1 ≤ i ≤ d.

The following theorem is well-known and is a starting point for under-
standing partition problems in higher dimensional space.

Theorem 7.2 (Akiyama and Alon [13]) Let d ≥ 2 and n ≥ 1 be in-
tegers. Assume that a d-colored point set S is in Rd in general position,
|S| = dn and S contains exactly n points of each color. Then S can be
partitioned into n disjoint subsets X1, X2, . . . , Xn so that every Xi contains
exactly one point of each color and all conv(Xi) are pairwise disjoint.

Notice that in the above theorem, S is a set of points in Rd in general po-
sition and Xi contains d points of S, and so conv(Xi) is a (d−1)-dimensional
simplex. The Ham-sandwich Theorem (Theorem 7.1) was generalized to bal-
anced partitions in higher dimensional space, and it was done by Karasev
[91] and Soberón [114] independently.

Theorem 7.3 ( Balanced Partition Theorem (continuous), Karasev
[91], Soberón [114]) Let d ≥ 2 and n ≥ 2 be integers. Assume that d mass
distributions µ1, µ2, . . . , µd are defined on Rd. Then there exists a partition
of Rd into n convex regions C1, C2, . . . , Cn that satisfy

µi(Cj) =
µi(Rd)

n
for all 1 ≤ j ≤ n and 1 ≤ i ≤ d.
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It is not easy to obtain a discrete version of balanced partition theorem
from a continuous version of it by case analysis. The following discrete ver-
sion of the Balanced Partition Theorem was proved by Blagojević, Rote,
Steinmeyer and Ziegler [36]. They obtained this theorem from Theorem 7.3
by making use of the so-called Integer Flow Theorem, which states that ev-
ery fractional flow in a network with integer capacities can be realized by an
integer flow.

Theorem 7.4 (Balanced Partition Theorem (discrete), Blagojević,
Rote, Steinmeyer and Ziegler [36]) Let d ≥ 2 and n ≥ 2 be integers. As-
sume that a d-colored point set S is in Rd in general position. Let c1, c2, . . . , cd
be the d colors, and let Si denote the set of points in S colored with ci. Then
there exists a partition of S into n disjoint subsets X1, X2, . . . , Xn that satisfy
conv(Xi) ∩ conv(Xj) = ∅ for all i ̸= j and

#{points in Xj colored with ci} =

⌊
|Si|
n

⌋
or

⌈
|Si|
n

⌉
for all 1 ≤ i ≤ d and 1 ≤ j ≤ n.

The following theorem is a generalization of Theorem 2.15.

Theorem 7.5 (Hamburger Theorem (continuous), Kano and Kynčl [84])
Let d ≥ 2 be an integer. Assume that d+1 mass distributions µ1, µ2, . . . , µd+1

are defined on Rd. Let ωi = µi(Rd) for all i, and ω = min{ωi : 1 ≤ i ≤ d+1}.
Assume that ω1 +ω2 + · · ·+ωd+1 = 1 and ωi ≤ 1

d
for all i. Then there exists

a hyperplane h such that each open half-space H defined by h satisfies

µi(H) ≤ 1

d

(
µ1(H) + µ2(H) + · · ·+ µd+1(H)

)
for 1 ≤ i ≤ d+ 1, and

µ1(H) + µ2(H) + · · ·+ µd+1(H) ≥ min
{1

2
, 1− dω

}
≥ 1

d+ 1
.

A discrete version of The Hamburger Theorem is the following.

Theorem 7.6 (Hamburger Theorem (discrete), Kano and Kynčl [84])
Let d ≥ 2 and n ≥ 2 be integers. Assume that a (d + 1)-colored point set
X1 ∪X2 ∪ · · · ∪Xd+1 is in Rd in general position and that

|X1 ∪X2 ∪ · · · ∪Xd+1| = dn and |Xi| ≤ n for all 1 ≤ i ≤ d+ 1.
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Then there exists a hyperplane h such that each open half-space H defined by
h satisfies

|Xi ∩H| ≤ 1

d
|(X1 ∪X2 ∪ · · · ∪Xd+1) ∩H| for 1 ≤ i ≤ d+ 1,

and |(X1 ∪X2 ∪ · · · ∪Xd+1) ∩H| is a positive integer multiple of d.

By using the above theorem, we can easily prove the following conjecture
in the case of r = d+ 1 by induction on n.

Conjecture 7.7 (Kano and Suzuki [88]) Let d ≥ 3, r ≥ d+1 and n ≥ 2
be integers. Let X1 ∪X2 ∪ · · · ∪Xr be an r-colored point set in Rd in general
position such that |X1| + |X2| + · · · + |Xr| = dn and |Xi| ≤ n for every
1 ≤ i ≤ r. Then X1 ∪ X2 ∪ · · · ∪ Xr can be partitioned into n disjoint
sets Y1, Y2, . . . , Yn so that every Yi has d points with distinct colors and all
conv(Yi) are pairwise disjoint.

Recall that for a point set X of Rd, a subset Y ⊂ X is called an island
spanned by X if X ∩ conv(Y ) = Y . Equivalently, we say that X spans Y .
A colored point set is called j-colorful if it contains at least j points with
distinct colors.

Theorem 7.8 (Holmsen, Kynčl and Valculescu [63]) Let d ≥ 2 and
n ≥ 2 be integers, and let S be a d-colored point set in Rd in general po-
sition. Suppose that |S| = (d + 1)n and that there are at least n points in
each color class. Then S can be partitioned into n sets X1, X2, . . . , Xn so
that every Xi contains exactly d + 1 points, every Xi is d-colorful and all
conv(Xi) are pairwise disjoint.

Note that the conclusion in the above theorem can be reworded as follows:
“Then S spans n pairwise disjoint d-colorful (d+ 1)-islands”. Moreover, the
authors of Theorem 7.8 made the following conjecture.

Conjecture 7.9 (Holmsen, Kynčl and Valculescu [63]) Let k,m and d
be integers such that k,m ≥ d ≥ 2. Let S be an m-colored point set of kn
points in Rd in general position. Suppose that S admits a partition into n
disjoint d-colorful sets of size k. Then S spans n pairwise disjoint d-colorful
k-islands.

Let us give some remarks on Conjecture 7.9. First, this conjecture says
that if S has a partition Y1∪Y2∪ · · ·∪Yn such that each Yi contains k points
and is d-colorful, then S can be partitioned into Z1 ∪ Z2 ∪ · · · ∪ Zn so that
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each Zi contains k points, is d-colorful, and all conv(Zj) are pairwise disjoint.
Namely, the partition Z1∪Z2∪· · ·∪Zn has the same combinatorial properties
as Y1∪Y2∪· · ·∪Yn together with a geometric property conv(Zi)∩conv(Zj) = ∅
for all i ̸= j.

Next, Theorem 7.2 proves Conjecture 7.9 in the case where k = m = d.
The case where m ≥ k = d = 2 is settled by Theorem 3.1. The case where
k ≥ m = d = 2 and the size of the color classes are divisible by n follows
from the Balanced Partition Theorem (Theorem 2.24). Theorem 2.33 solves
the case where m = d = 2, and Theorem 7.8 solves the case where k = d+ 1
and m = d, and the case where m = d+ 1, k = d was solved in [84].

In order to explain the next theorem, we need some definitions and re-
marks originally presented in [16]. Let µ1, µ2, . . . , µd+1 be d + 1 probability
measures on Rd, and let ε ∈ (0, 1

2
) be a real number. Then the set of mea-

sures is called ε-not-permuted if for any half-space H with µi(H) < ε for all
1 ≤ i ≤ d+ 1, we have

µi(H) ≥ µj(H) for some i = i(ε) < j = j(ε).

For ε > 0, consider all half-spaces H in Rd such that µi(H) < ε for all
i and values µi(H) are pairwise distinct. If we arrange the values µi(H) in
the ascending order, then we get some permutation of {1, 2, . . . , d + 1}. So
there is an order of µi such that the measures µi are ε-not-permuted if and
only if in such a way we cannot get all possible permutations of the d + 1
element set. In Theorem 3.2, we are actually interested in measures that are
ε-not-permuted for at least one order of them ([16]).

A natural example of ε-not-permuted measures appears when the support
of one measure lies in the interior of the convex hull of the union of supports
of the other d measures. In this case the measures are ε-not-permuted for
sufficiently small ε.

Theorem 7.10 (Akopyan and Karasev [16]) Let µ1, µ2, . . . , µd+1 be d+
1 probability ε-not-permuted measures on Rd for some ε ∈ (0, 1

2
). Then there

exists a half-space H such that

µ1(H) = µ2(H) = · · · = µd+1(H) ∈
[
ε,
1

2

]

For every directed line ℓ in Rd, we write y ≤ℓ x if the projection of a
point y to ℓ has no larger coordinate than the projection of a point x to ℓ. A
hyperplane h in Rd is called balanced if each half-space defined by h contains
precisely the same number of points of each color. The following theorem is a
discrete version of the above theorem and a generalization of Theorem 2.14.
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Theorem 7.11 (Akopyan and Karasev [16]) Let X1, X2, · · · , Xd+1 be d+
1 sets of points in Rd in general position such that |Xi| = n for every
1 ≤ i ≤ d + 1 (i.e., Xi is a set of n points colored with i). Assume that
for every directed line ℓ there exist two colors a = a(ℓ) and b = b(ℓ), a < b,
and a point x ∈ Xa such that for every y ∈ Xb, it follows that y ≤ℓ x holds.
Then there exists a balanced hyperplane h, namely, there exists a hyperplane
h such that each half-space defined by h contains precisely the same number
of points of each Xi.

The following theorem is a generalization of Theorem 2.42.

Theorem 7.12 (Akopyan and Karasev [16]) Suppose that d + 1 proba-
bility measures µ1, µ2, . . . , µd+1 are defined on Rd, and let 0 < α < 1

2
be a

real number. Then there always exists a convex set C in Rd such that

µ1(C) = µ2(C) = · · · = µd+1(C) = α

if and only if α = 1
m

for a positive integer m.

LetH = {H1, H2, . . . , Hm} be a finite set of hyperplanes in Rd, {A1, A2, . . . , Am}
be affine functions such that the zero set ofAi isHi, and let PH = A1A2 · · ·Am

be the product of these affine functions (see Fig. 14). If µ is a mass distri-
bution in Rd, we say that H bisects µ if

µ
(
{v ∈ Rd : PH(v) > 0}

)
=

µ(Rd)

2
. (1)

Theorem 7.13 (Hubard and Karasev [66]) Let d ≥ 2 be a power of two,
n ≥ 1 be an integer, and let µ1, µ2, . . . , µdn be dn mass distributions on Rd.
Then there exists an arrangement of at most n hyperplanes H1, H2, . . . , Hm,
m ≤ n, that bisect every measure µi, 1 ≤ i ≤ dn, namely, equation (1) holds
for all µi, 1 ≤ i ≤ dn.

The following conjecture is open.

Conjecture 7.14 (Barba, Pilz and Schnider [24]) Let d ≥ 3 and n ≥ 1
be integers and let µ1, µ2, . . . , µdn be dn mass distributions on Rd. Then there
exist n hyperplanes H1, H2, . . . , Hn that bisect every measure µi, 1 ≤ i ≤ dn.

For a convex body C in Rd, let ∂(C) denote the (d − 1)-dimensional
surface area of C. In particular, if d = 2 and C is a convex set in the plane,
then ∂(C) denotes the perimeter of C.
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Theorem 7.15 (Karasev [91]) Let 1 ≤ k < d be integers. Let C be a con-
vex body in Rd, µ1, µ2, . . . , µk be probability measures on C, and σ1, σ2, . . . , σn−k

be probability measures on ∂(C). Then for any integer q ≥ 1, the body C can
be partitioned into q convex parts X1, X2, . . . , Xq so that

µi(X1) = µ2(Xi) = · · · = µi(Xq) for all 1 ≤ i ≤ k,

and
σj(X1 ∩ ∂(C)) = σj(X2 ∩ ∂(C)) = · · · = σj(Xq ∩ ∂(C))

for all 1 ≤ j ≤ d− k.

Consider a problem of the number of empty monochromatic simplices for
a given colored point set in a space Rd. Recall that for a set S of points in
Rd, a subset X ⊂ S is said to be empty if conv(X) ∩ S = X.

Theorem 7.16 (Aichholzer et al. [10]) Let d ≥ 2 be an integer. Any
2-colored set S of n points in Rd in general position determines Ω(nd−2/3)
empty monochromatic d-simplices.

Theorem 7.17 (Aichholzer et al. [10]) Let d ≥ k ≥ 3 be integers. Any
k-colored set S of n points in Rd in general position determines Ω(nd−k+1+2−d

)
empty monochromatic d-simplices.
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