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Abstract

For a vertex v of an edge-colored graph, the color degree of v is the
number of colors appeared in edges incident with v. An edge-colored
graph is called properly colored if no two adjacent edges have the
same color. In this paper, we prove that if the minimum color degree
sum of two adjacent vertices of an edge-colored connected graph G is
at least |G|, then G has a properly colored spanning tree. This is a
generalization of the result proved by Cheng, Kano and Wang. We
also show the sharpness of this lower bound of the color degree sum.
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1 Introduction

In this paper, we consider finite graphs which have neither loops nor multiple
edges. Let G be a graph with vertex set V (G) and edge set E(G). We write
|G| for the order of G, that is, |G| = |V (G)|. For two vertices x and y of G,
an edge joining them is denoted by xy or yx. A star is a complete bipartite
graph K1,m for some m ≥ 1, and the vertex of a star with degree m is called
its center.

In this paper, we deal with edge-colored graphs, in which two adjacent
edges may have the same color. Let G be an edge-colored graph. For an edge
e of G, let col(e) denote the color of e. For a vertex v of G, the color degree
of v, denoted by degcG(v), is the number of colors appeared in edges incident
with v. The minimum color degree of G is defined by

δcol(G) = min{degcG(v) : v ∈ V (G)}.

An edge-colored graph G is called properly colored if no two adjacent edges
of G have the same color. Moreover, G is called rainbow or heterochromatic
if no two edges of G have the same color. Cheng, Kano and Wang [2] gave a
minimum color degree condition for an edge-colored graph to have a properly
colored spanning tree.

Theorem 1 (Cheng, Kano andWang [2]). Let G be an edge-colored connected
graph. If δcol(G) ≥ |G|/2, then G has a properly colored spanning tree.

In order to prove Theorem 1, they proved the following theorem.

Theorem 2 (Cheng, Kano andWang [2]). Let G be an edge-colored connected
graph. Suppose that for each color c, the set of edges colored with c forms a
star. If δcol(G) ≥ |G|/2, then G has a rainbow spanning tree.

They also showed the sharpness of these lower bounds of the minimum
color degree.

In this paper, we generalize the above two theorems by using a minimum
color degree sum. Let

σ̄col
2 (G) = min{degcG(u) + degcG(v) : u, v ∈ V (G) and uv ∈ E(G)}.

Note that for a graph, which is not an edge-colored graph, the minimum
degree sum of two non-adjacent vertices is often used. However, here we
consider the minimum color degree sum of two adjacent vertices. We will
explain later the reason why we do not use the minimum color degree sum
condition of two non-adjacent vertices.

Li proved the following theorem, in which a rainbow triangle is the same
as a properly colored triangle.



Theorem 3 (Li [4]). Let G be an edge-colored connected graph. If δcol(G) ≥
(|G|+ 1)/2, then G has a rainbow triangle.

Li, Ning and Zhang generalized the above theorem by using the minimum
color degree sum σ̄col

2 (G).

Theorem 4 (Li, Ning and Zhang [5]). Let G be an edge-colored connected
graph. If σ̄col

2 (G) ≥ |G|+ 1, then G has a rainbow triangle.

Let us remark that Ore [6] generalized Dirac’s minimum degree condition
for a graph to have a hamiltonian cycle [3] to the condition of minimum
degree sum of two non-adjacent vertices. Therefore one can think that it is
natural to use the minimum color degree sum of two non-adjacent vertices
for edge-colored graphs. However the following example given in [5] shows
that we can not generalize Theorem 3 by using color degree sum of two non-
adjacent vertices. Let k and n be integers such that (n+1)/2 ≤ k ≤ n−2. Let
G1 be the edge-colored connected graph such that V (G1) = {v1, v2, . . . , vn},
E(G1) = {vivj : 1 ≤ i < j ≤ n, 1 ≤ i ≤ k} and col(vivj) = min{i, j}. Then
for any two non-adjacent vertices u and v, degcG1

(u)+degcG1
(v) = 2k ≥ n+1.

On the other hand, G1 has no rainbow triangle. Hence the condition of
minimum color degree sum of two non-adjacent vertices is not available.

In this paper, we generalize Theorems 1 and 2 by using σ̄col
2 (G) as follows.

Theorem 5. Let G be an edge-colored connected graph. If σ̄col
2 (G) ≥ |G|,

then G has a properly colored spanning tree.

Theorem 6. Let G be an edge-colored connected graph. Suppose that for
each color c, the set of edges colored with c forms a star. If σ̄col

2 (G) ≥ |G|,
then G has a rainbow spanning tree.

We remark that the condition of minimum color degree sum of two non-
adjacent vertices is not useful. Let G1 be the edge-colored connected graph of
order n defined above. Suppose that there exists a properly colored spanning
tree T in G1. Then each color is chosen at most once in T , in particular, T
must be a rainbow spanning tree of G1. On the other hand, G1 has at most
n − 2 colors. Thus T does not exist. On the other hand, the color degree
sum of two non-adjacent vertices is at least n as explained before. Therefore
the condition of minimum color degree sum of two non-adjacent vertices is
not available.

Since the lower bound of the minimum color degree sum in Theorems 1
and 2 are best possible, we can see that the lower bound of the color de-
gree sum conditions in Theorems 5 and 6 are also best possible. For the
convenience of readers, we explain an example given in [2]. Let Km be a



rainbow complete graph with V (Km) = {u1, u2, . . . , um}, all of whose edges
have distinct colors. Let v1, v2, . . . , vm+1 be m+1 new vertices not contained
in V (Km). Let c1, c2, . . . , cm be m new colors not appearing in Km. We con-
struct the edge-colored connected graph G2 from Km and {v1, v2, . . . , vm+1}
by adding a new edge uivj colored by ci for all 1 ≤ i ≤ m and 1 ≤ j ≤ m+1.
Then for each color c, the set of edges colored with c forms a star, and
σ̄col
2 (G2) = 2m = |G2| − 1. However, G2 has no properly colored spanning

tree.
In Section 2, we prove Theorem 6. Our proof is completely different

from the proof of Theorem 2. In Section 3, we prove Theorem 5 by using
Theorem 6.

2 Proof of Theorem 6

We denote by ω(G) the number of components of a graph G. Given an edge-
colored graph G and a color set R, we define ER(G) = {e ∈ E(G) : col(e) ∈
R}. For a set X, the cardinality of X is denoted by |X| or #X.

Let D be a digraph with vertex set V (D) and arc set A(D). For an arc
uv in D, u is its initial vertex and v is its terminal vertex. For an arc uv of
D, we define the common outdegree d+D(uv) of uv (resp. the common indegree
d−D(uv) of uv) to be the number of common out-neighbors (resp. common
in-neighbors) of u and v. Namely, for an arc uv of D, we define

d+D(uv) = #{x ∈ V (D) : ux, vx ∈ A(D)},

d−D(uv) = #{x ∈ V (D) : xu, xv ∈ A(D)}.

In this section, we prove Theorem 6. In order to prove Theorem 6, we
need the following theorem and lemma.

Theorem 7 (Akbari and Alipour [1], Suzuki [7]). An edge-colored connected
graph G has a rainbow spanning tree if and only if for every color set R with
1 ≤ |R| ≤ |G| − 2, ω(G− ER(G)) ≤ |R|+ 1.

Lemma 1. For every digraph D,
∑

uv∈A(D) d
+
D(uv) =

∑
uv∈A(D) d

−
D(uv).

Proof. Let D be a digraph. Define

O = {(uv, x) : uv ∈ A(D), x ∈ V (D), ux, vx ∈ A(D)},
I = {(uv, x) : uv ∈ A(D), x ∈ V (D), xu, xv ∈ A(D)}, and

△ = {(x, y, z) : x, y, z ∈ V (D), xy, yz, xz ∈ A(D)}.



Then there exist a bijection from O to △, and a bijection from I to △. This
implies that |O| = |△| = |I|. On the other hand, by the definitions of d+D(uv)
and d−D(uv), we can see that

∑
uv∈A(D) d

+
D(uv) = |O| and

∑
uv∈A(D) d

−
D(uv) =

|I|. Hence the desired equality holds.

Proof of Theorem 6. Assume that an edge-colored connected graph G
satisfies the assumption of Theorem 6 but has no rainbow spanning tree.
Then, by Theorem 7, there exists a color set R such that

1 ≤ |R| ≤ |G| − 2 and ω(G− ER(G)) ≥ |R|+ 2. (1)

For every color c ∈ R, let Star(c) denote the monochromatic star formed by
the set of edges of G colored with c. For every Star(c) isomorphic to K1,1,
we choose any vertex of it as its center, and fix it. Let us define Cent(R) as

Cent(R) = {x ∈ V (G) : x is the center of Star(c) for some c ∈ R}.

The center of Star(c) for some c ∈ R is called a color center.
We first orient each edge of ER(G) from its color center to the other

end-vertex. Then we define the digraph D as follows: the vertex set of D is
Cent(R) and the arc set of D is the set of oriented edges of ER(G) joining
two vertices of Cent(R) contained in distinct components of G−ER(G) (see
Figure 1).
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Figure 1: An edge-colored graph G, R = {c1, c2, . . . , c7}, G − ER(G) with
components W1,W2, . . . ,W9, and the digraph D with vertex set V (D) =
Cent(R) = {◦} and arc set A(D) = {bold arrows}.

We consider the following two cases.



Case 1. A(D) ̸= ∅.
By Lemma 1, there exists an arc x1x2 ∈ A(D) such that

d+D(x1x2) ≥ d−D(x1x2). (2)

For i = 1, 2, let Wi be the component of G − ER(G) such that xi ∈ V (Wi),
and let us define R(xi) as follows (see Figure 1):

R(xi) = {col(xiu) : xiu ∈ E(G) and u /∈ V (Wi)}.

Then R(xi) ⊆ R. It is easy to see that if y ∈ V (D) satisfies x1y, x2y ∈ A(D),
then R(x1)∪R(x2) does not contain a color c such that the center of Star(c)
is y. This implies that

|R(x1) ∪R(x2)| ≤ |R| − d+D(x1x2). (3)

For every c ∈ R(x1) ∩ R(x2), it follows that either c = col(x1x2) or there
exists y ∈ V (D) such that yx1, yx2 ∈ A(D) and c = col(yx1) = col(yx2).
Hence we obtain,

|R(x1) ∩R(x2)| ≤ d−D(x1x2) + 1. (4)

By (1)–(4), we obtain,

degcG(x1) + degcG(x2)

≤ (|W1| − 1 + |R(x1)|) + (|W2| − 1 + |R(x2)|)
= |W1|+ |W2| − 2 + |R(x1) ∪R(x2)|+ |R(x1) ∩R(x2)|
≤ |W1|+ |W2| − 2 + (|R| − d+D(x1x2)) + (d−D(x1x2) + 1)

≤ |W1|+ |W2| − 1 + |R|
≤ |W1|+ |W2|+

(
ω(G− ER(G))− 2

)
− 1

≤ |G| − 1.

This contradicts the color degree sum condition of Theorem 6.

Case 2. A(D) = ∅.
Since ω(G − ER(G)) ≥ 2, there exists an edge x1x2 ∈ E(G) such that

col(x1x2) ∈ R and x1x2 connects different components of G − ER(G). By
symmetry and the assumtion of Case 2, we may assume that x1 ∈ Cent(R)
and x2 ̸∈ Cent(R). For i = 1, 2, let Wi be the component of G−ER(G) such
that xi ∈ Wi. Let

Col(x1) = {c ∈ R : x1 is the center of Star(c)}.



By the assumption of Case 2, degcG(x1) ≤ |W1|−1+ |Col(x1)|. Also, since x2

is not incident with any edge of the color in Col(x1) \ {col(x1x2)}, we have

degcG(x2) ≤ |W2| − 1 + (|R| − |Col(x1)|+ 1) = |W2|+ |R| − |Col(x1)|.

Hence, by (1), we have

degcG(x1) + degcG(x2)

≤ (|W1| − 1 + |Col(x1)|) + (|W2|+ |R| − |Col(x1)|)
≤ |W1|+ |W2| − 1 + |R|
≤ |W1|+ |W2|+

(
ω(G− ER(G))− 2

)
− 1

≤ |G| − 1.

This is a contradiction. Therefore we complete the proof of Theorem 6.

3 Proof of Theorem 5

In this section we prove Theorem 5. At first, we prepare the following lemma.

Lemma 2. Let G be an edge-colored connected graph that satisfies σ̄col
2 (G) ≥

|G|. Suppose that G has a monochromatic path (xyzu) of length 3, where
x, y, z, u ∈ V (G). Then G− yz is connected and satisfies σ̄col

2 (G− yz) ≥ |G|.

Proof. Suppose that G−yz is not connected. Let Hy and Hz be components
of G − yz such that y ∈ V (Hy) and z ∈ V (Hz). Then |G| ≤ σ̄col

2 (G) ≤
degcG(y)+degcG(z) ≤ |Hy|+ |Hz|−2 = |G|−2, a contradiction. Hence G−yz
is connected. It is easy to see that G− yz satisfies σ̄col

2 (G− yz) ≥ |G| since
col(xy) = col(yz) = col(zu).

We are now ready to prove Theorem 5 in the same way as in the proof of
Theorem 1.

Proof of Theorem 5. We prove Theorem 5 by induction on |E(G)|. Suppose
that G satisfies the assumption of Theorem 5. By Lemma 2, we may assume
that G has no monochromatic path of length 3 since otherwise we can apply
the induction hypothesis to G− yz. Hence for each color c, the set of edges
colored with c forms disjoint union of stars. We construct a new edge-colored
graph G3 from G by recoloring all monochromatic stars with distinct colors.
Namely, for each monochromatic star of G, we recolor all its edges by a new
color depending only on it, and denote the resulting edge-colored graph by
G3. Then G3 satisfies the assumption of Theorem 6. Hence G3 has a rainbow
spanning tree T . By recoloring all the edges of T with their original colors
in G, we obtain a properly colored spanning tree of G.



Acknowledgment
The authors would like to thank the referees for their valuable comments and
suggestions.

References

[1] S. Akbari and A. Alipour, Multicolored trees in complete graphs, J. Graph
Theory, 54 (2006) 221–232.

[2] Y. Cheng, M. Kano and G. Wang, Properly colored spanning trees in
edge-colored graphs, Discrete Math., 343 (2020) Issue 1, January, Article
111629 .

[3] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc.,
2 (1952) 69–81.

[4] H. Li, Rainbow C ′
3s and C ′

4s in edge-colored graphs, Discrete Math., 313
(2013) 1893–1896.

[5] R. Li, B. Ning and S. Zhang, Color degree sum conditions for rainbow
triangles in edge-colored graphs, Graphs Combin., 32 (2016) 2001–2008.

[6] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960) 55.

[7] K. Suzuki, A necessary and sufficient condition for the existence of a
heterochromatic spanning tree in a graph, Graphs Combin., 22 (2006)
261–269.


