Characterization of 1-Tough Graphs using Factors

Hongliang Lu *
School of Mathematics and Statistics
Xi'an Jiaotong University
Xi'an, Shaanxi 710049, China
Mikio Kano ${ }^{\dagger}$
Ibaraki University, Hitachi, Ibaraki, Japan

Abstract

For a graph G, let $\operatorname{odd}(G)$ and $\omega(G)$ denote the number of odd components and the number of components of G, respectively. Then it is well-known that G has a 1-factor if and only if $\operatorname{odd}(G-S) \leq|S|$ for all $S \subset V(G)$. Also it is clear that $\operatorname{odd}(G-S) \leq \omega(G-S)$. In this paper we characterize a 1-tough graph G, which satisfies $\omega(G-$ $S) \leq|S|$ for all $\emptyset \neq S \subset V(G)$, using an H-factor of a set-valued function $H: V(G) \rightarrow\{\{1\},\{0,2\}\}$. Moreover, we generalize this characterization to a graph that satisfies $\omega(G-S) \leq f(S)$ for all $\emptyset \neq S \subset V(G)$, where $f: V(G) \rightarrow\{1,3,5, \ldots\}$.

1 Introduction

We consider finite simple graphs, which have neither loops nor multiple edges. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. We denote by $i s o(G)$ and $\operatorname{odd}(G)$ the number of isolated vertices and the number of odd components of G, respectively. For a set \mathcal{S} of connected graphs, a spanning

[^0]subgraph F of G is called an \mathcal{S}-factor if each component of F is isomorphic to an element of \mathcal{S}. For example, let C_{n} denote the cycle of order $n \geq 3$, and let K_{2} denote the complete graph of order 2 . Thus each component of a $\left\{K_{2}, C_{n}: n \geq 3\right\}$-factor is K_{2} or a cycle, and a $\left\{K_{2}\right\}$-factor is simply a 1 -factor. A graph G is said to be factor-critical if for every vertex x of G, $G-x$ has a 1 -factor. We begin with the 1 -factor theorem.

Theorem 1 (The 1-factor theorem, [11]) A connected graph G either has a 1-factor or is factor-critical if and only if

$$
\begin{equation*}
\operatorname{odd}(G-S) \leq|S| \quad \text { for all } \quad \emptyset \neq S \subset V(G) \tag{1}
\end{equation*}
$$

Assume that a connected graph G satisfies (1). If G has even order, then G has a 1-factor, otherwise, G is factor-critical. Moreover, the 1-factor theorem is usually stated as follows: a graph G has a 1 -factor if and only if $\operatorname{odd}(G-S) \leq|S|$ for all $S \subset V(G)$. By letting $S=\emptyset$ in this form, we obtain that every component of G is of even order. However as mentioned in the above theorem, if we use $\emptyset \neq S \subset V(G)$ instead of $S \subset V(G)$, then the order of G is not necessarily even, and if G has odd order and satisfies (1), then G is factor-critical. This fact is shown as follows.

It is known that a graph H of even order satisfies $\operatorname{odd}(H-X) \equiv|X|$ $(\bmod 2)$ for every $X \subset V(H)$. Assume that a connected graph G has odd order and satisfies (1), and let x be any vertex of G. Then $G-x$ has even order, and for every $S \subset V(G-x)$, it follows from (1) and the property given above that

$$
\begin{aligned}
& \operatorname{odd}(G-x-S)=\operatorname{odd}(G-(S \cup\{x\})) \leq|S \cup\{x\}|=|S|+1 \text { and } \\
& \operatorname{odd}(G-x-S) \equiv|S| \quad(\bmod 2)
\end{aligned}
$$

Thus odd $(G-x-S) \leq|S|$. So $G-x$ has a 1-factor by the usual 1-factor theorem, and hence G is factor-critical. Conversely, if G is factor-critical, then for $\emptyset \neq S \subset V(G)$ and $y \in S$, we have $\operatorname{odd}(G-S)=o d d(G-y-(S-$ $y)) \leq|S-y| \leq|S|$ since $G-y$ has a 1-factor. Hence (1) holds.

The next theorem is also well-known.
Theorem 2 ([12], Theorem 7.2 in [1]) A connected graph G of order at least 2 has a $\left\{K_{2}, C_{n}: n \geq 3\right\}$-factor if and only if

$$
\begin{equation*}
\text { iso }(G-S) \leq|S| \quad \text { for all } \quad \emptyset \neq S \subset V(G) \tag{2}
\end{equation*}
$$

Since $i s o(G-S) \leq \operatorname{odd}(G-S)$, if a connected graph G of order at least 2 satisfies (1), then G satisfies (2), and so G has a $\left\{K_{2}, C_{n}: n \geq 3\right\}$-factor. We
can construct such a factor as follows. Assume that G satisfies (1). If G has even order, then G has a 1 -factor, which is clearly a $\left\{K_{2}, C_{n}: n \geq 3\right\}$-factor. Assume that G has odd order, and let u and v be two adjacent vertices of G. Since G is factor-critical, $G-u$ has a 1-factor M_{u} and $G-v$ has a 1-factor M_{v}. Then $M_{u} \cup M_{v}$ is a union of two matchings of G, and each component of $M_{u} \cup M_{v}$ is a K_{2}, an even cycle, or a path connecting u and v. Hence $\left(M_{u} \cup M_{v}\right)+u v$ is a $\left\{K_{2}, C_{n}: n \geq 3\right\}$-factor of G, which contains at most one odd cycle.

We denote by $\omega(G)$ the number of components of G. A connected graph G is said to be t-tough if $|S| \geq t \omega(G-S)$ for every $S \subset V(G)$ with $\omega(G-S)>1$. It is obvious that

$$
i s o(G-S) \leq o d d(G-S) \leq \omega(G-S) \quad \text { for all } \quad \emptyset \neq S \subset V(G)
$$

In this paper, we first characterize a connected graph G that satisfies $\omega(G-$ $S) \leq|S|$ for all $\emptyset \neq S \subset V(G)$. Such a graph is called 1-tough. Bauer, Hakimi and Schmeichel [3] showed that for any positive rational number t, the t-tough problem, which is a problem of checking a graph to be t-tough or not, is NP-Hard.

In this paper, we give a characterization of a 1-tough graph in terms of graph factors. Later we generalize this characterization by using a function $f: V(G) \rightarrow\{1,3,5, \ldots\}$. Some results related to our theorems are found in $[2,4,5,6,7,9,10]$.

2 Characterization of 1-tough graphs

In this section, we give a characterization of a graph G that satisfies $\omega(G-$ $S) \leq|S|$ for all $\emptyset \neq S \subset V(G)$. In order to state our theorem, we need some notions and definitions. Let \mathbf{Z} denote the set of integers. For two vertices x and y of a graph, an edge joining x to y is denoted by $x y$ or $y x$. The degree of a vertex v in a subgraph H is denoted by $\operatorname{deg}_{H}(v)$. For two vertex sets X and Y of G, not necessary to be disjoint, we denote by $e_{G}(X, Y)$ the number of edges of G joining a vertex of X to a vertex of Y. If C is a component of $G-S$, then we briefly write $e_{G}(C, S)$ for $e_{G}(V(C), S)$. For a vertex set X of G, the subgraph of G induced by X is denoted by $\langle X\rangle_{G}$. For a function $h: V(G) \rightarrow \mathbf{Z}$, a subset $X \subseteq V(G)$ and a component C of $G-S$ for some $S \subset V(G)$, we write

$$
h(X):=\sum_{x \in X} h(x) \quad \text { and } \quad h(C):=\sum_{x \in V(C)} h(x) .
$$

For any vertex x of G, let G^{x} denote the graph obtained from G by adding a new vertex x^{\prime} together with a new edge $x x^{\prime}$, that is, $G^{x}=G+x x^{\prime}$. Let $H: V(G) \rightarrow\{\{1\},\{0,2\}\}$ be a set-valued function. So $H(v)$ is equal to $\{1\}$ or $\{0,2\}$ for each vertex v. We write

$$
H^{-1}(1):=\{v \in V(G): H(v)=\{1\}\} .
$$

A spanning subgraph F of G is called an H-factor if $\operatorname{deg}_{F}(v) \in H(v)$ for all $v \in V(G)$. This H-factor is also called a $\{1,\{0,2\}\}$-factor. It is clear that if G has an H-factor, then $\left|H^{-1}(1)\right|$ must be even by the Handshaking Lemma. So if $\left|H^{-1}(1)\right|$ is odd, then G has no H-factor. For a function $H: V(G) \rightarrow$ $\{\{1\},\{0,2\}\}$ and a vertex x of G, we define $H^{x}: V\left(G^{x}\right) \rightarrow\{\{1\},\{0,2\}\}$ as follows.

$$
H^{x}(v)= \begin{cases}\{1\} & \text { if } v=x^{\prime} \tag{3}\\ H(v) & \text { otherwise. }\end{cases}
$$

A graph G is said to be H-critical or $\{1,\{0,2\}\}$-critical if G^{x} has an H^{x}-factor for every vertex x of G.

Let $g, f: V(G) \rightarrow \mathbf{Z}$ be functions such that $g(v) \leq f(v)$ and $g(v) \equiv f(v)$ $(\bmod 2)$ for all $v \in V(G)$, where we allow that $g(x)<0$ and $\operatorname{deg}_{G}(y)<f(y)$ for some vertices x and y (see Theorem 6.1 in [1]). Then a spanning subgraph F of G is called a parity (g, f)-factor if

$$
g(v) \leq \operatorname{deg}_{F}(v) \leq f(v) \quad \text { and } \quad \operatorname{deg}_{F}(v) \equiv f(v) \quad(\bmod 2)
$$

for all $v \in V(G)$. The following theorem gives a criterion for a graph to have a parity (g, f)-factor.

Theorem 3 (Lovász, [8], Theorem 6.1 in [1]) Let G be a connected graph and $g, f: V(G) \rightarrow \mathbf{Z}$ such that $g(v) \leq f(v)$ and $g(v) \equiv f(v)(\bmod 2)$ for all $v \in V(G)$. Then G has a parity (g, f)-factor if and only if for any two disjoint subsets S, T of $V(G)$,

$$
\begin{equation*}
\eta(S, T)=f(S)-g(T)+\sum_{x \in T} \operatorname{deg}_{G}(x)-e_{G}(S, T)-q(S, T) \geq 0 \tag{4}
\end{equation*}
$$

where $q(S, T)$ denotes the number of components C of $G-S-T$, called g-odd components, such that $f(C)+e_{G}(C, T) \equiv 1(\bmod 2)$. If necessary, we write $\eta(G ; S, T)$ and $q(G ; S, T)$ for $\eta(S, T)$ and $q(S, T)$ to express the graph G.

Note that if (4) holds, then $\eta(\emptyset, \emptyset)=-q(\emptyset, \emptyset) \geq 0$, which implies that $|f(V(G))| \equiv 0(\bmod 2)$. The following lemma will prove useful.

Lemma 4 Let G, g, f, S, T and $\eta(S, T)$ be the same as Theorem 3. Then

$$
\eta(S, T) \equiv f(V(G)) \equiv \sum_{x \in V(G)} f(x) \quad(\bmod 2)
$$

Proof. Let $C_{1}, C_{2}, \ldots, C_{m}$ be the g-odd components of $G-(S \cup T)$, and let $D_{1}, D_{2}, \ldots, D_{r}$ be the other components of $G-(S \cup T)$. Then $m=q(S, T)$, $f\left(C_{i}\right)+e_{G}\left(C_{i}, T\right) \equiv 1(\bmod 2)$ for $1 \leq i \leq m$, and $f\left(D_{j}\right)+e_{G}\left(D_{j}, T\right) \equiv 0$ $(\bmod 2)$ for $1 \leq j \leq r$. Hence

$$
\begin{aligned}
m & \equiv \sum_{i=1}^{m}\left(f\left(C_{i}\right)+e_{G}\left(C_{i}, T\right)\right)+\sum_{j=1}^{r}\left(f\left(D_{j}\right)+e_{G}\left(D_{j}, T\right)\right) \\
& \equiv \sum_{x \in V(G)-(S \cup T)} f(x)+e_{G}(V(G)-(S \cup T), T) \quad(\bmod 2) .
\end{aligned}
$$

Since $g(x) \equiv f(x)(\bmod 2)$ and $-k \equiv k(\bmod 2)$ for every integer k, we have the following.

$$
\begin{aligned}
\eta(S, T) \equiv & f(S)+f(T)+\sum_{x \in T} \operatorname{deg}_{G}(x)+e_{G}(S, T)+m \\
\equiv & f(S)+f(T)+e_{G}(V(G), T)+e_{G}(S, T) \\
& \quad+\sum_{x \in V(G)-(S \cup T)} f(x)+e_{G}(V(G)-(S \cup T), T) \\
= & \sum_{x \in V(G)} f(x)+e_{G}(V(G), T)+e_{G}(V(G)-T, T) \\
= & f(V(G))+2\left|E\left(\langle T\rangle_{G}\right)\right| \quad\left(\text { by } e_{G}(T, T)=2\left|E\left(\langle T\rangle_{G}\right)\right|\right) \\
\equiv & \sum_{x \in V(G)} f(x) \quad(\bmod 2) .
\end{aligned}
$$

Therefore the lemma holds.
The next theorem is our first result, which gives a characterization of a 1-tough graph.

Theorem 5 Let G be a connected graph. Then the following two statements hold.
(i) G has an H-factor for every $H: V(G) \rightarrow\{\{1\},\{0,2\}\}$ with $\left|H^{-1}(1)\right|$ even if and only if

$$
\begin{equation*}
\omega(G-S) \leq|S|+1 \quad \text { for all } \quad S \subset V(G) \tag{5}
\end{equation*}
$$

(ii) G is H-critical for every $H: V(G) \rightarrow\{\{1\},\{0,2\}\}$ with $\left|H^{-1}(1)\right|$ odd if and only if

$$
\begin{equation*}
\omega(G-S) \leq|S| \quad \text { for all } \quad \emptyset \neq S \subset V(G) \tag{6}
\end{equation*}
$$

Proof. We first prove the statement (i), starting with sufficiency. Let H : $V(G) \rightarrow\{\{1\},\{0,2\}\}$ be any set-valued function such that $\left|H^{-1}(1)\right|$ is even. Let M be a sufficiently large odd integer. Define $f: V(G) \rightarrow \mathbf{Z}$ as

$$
f(v)= \begin{cases}1 & \text { if } H(v)=\{1\} \\ 2 & \text { otherwise }\end{cases}
$$

Next define $g: V(G) \rightarrow \mathbf{Z}$ as

$$
g(v)= \begin{cases}-M & \text { if } H(v)=\{1\} \\ -M-1 & \text { otherwise }\end{cases}
$$

Then it is easy to see that G has an H-factor if and only if G has a parity (g, f)-factor. We use Theorem 3. Let S and T be two disjoint subsets of $V(G)$. If $T \neq \emptyset$, then $-g(T)$ is sufficiently large, and so

$$
\eta(S, T)=f(S)-g(T)+\sum_{x \in T} \operatorname{deg}_{G}(x)-e_{G}(S, T)-q(S, T) \geq 0 .
$$

Thus we may assume that $T=\emptyset$. It follows that $\eta(\emptyset, \emptyset)=-q(\emptyset, \emptyset)=0$ since $f(V(G)) \equiv\left|H^{-1}(1)\right| \equiv 0(\bmod 2)$ and G is connected. Hence we may assume $S \neq \emptyset$. By $q(S, \emptyset) \leq \omega(G-S)$ and (5), we have

$$
\eta(S, \emptyset)=f(S)-q(S, \emptyset) \geq|S|-\omega(G-S) \geq-1
$$

By $f(V(G)) \equiv 0(\bmod 2)$ and Lemma 4 , the above inequality implies $\eta(S, \emptyset) \geq$ 0 . Therefore G has the desired H-factor.

We now prove the necessity. Suppose that there exists a subset $\emptyset \neq S^{\prime} \subset$ $V(G)$ such that

$$
\begin{equation*}
\omega\left(G-S^{\prime}\right) \geq\left|S^{\prime}\right|+2 \tag{7}
\end{equation*}
$$

Let $C_{1}, C_{2}, \ldots, C_{a}$ be the odd components of $G-S^{\prime}$, and let $D_{1}, D_{2}, \ldots, D_{b}$ be the even components of $G-S^{\prime}$, where $\left|V\left(C_{i}\right)\right|$ is odd and $\left|V\left(D_{j}\right)\right|$ is even. If $b \geq 1$, then take a vertex $w_{i} \in D_{i}$ for every $1 \leq i \leq b$, and let $W \subseteq\left\{w_{i}: 1 \leq i \leq b\right\}$ such that $|W| \in\{b-1, b\}$ and $|V(G)|-|W|$ is even. If $b=0$, then take $W \subseteq V\left(C_{1}\right)$ such that $|W| \in\{0,1\}$ and $|V(G)|-|W|$ is even.

We define $H: V(G) \rightarrow\{\{1\},\{0,2\}\}$ as

$$
H(v)= \begin{cases}\{0,2\} & \text { if } v \in W \\ \{1\} & \text { otherwise }\end{cases}
$$

Then $\left|H^{-1}(1)\right|$ is even by $H^{-1}(1)=V(G)-W$ and by the choice of W. Let M be a sufficiently large odd integer, and define $f, g: V(G) \rightarrow \mathbf{Z}$ as

$$
f(v)= \begin{cases}2 & \text { if } v \in W \\ 1 & \text { otherwise }\end{cases}
$$

and

$$
g(v)= \begin{cases}-M-1 & \text { if } v \in W \\ -M & \text { otherwise }\end{cases}
$$

Then it is easy to see that G has an H-factor if and only if G has a parity (g, f)-factor. By the definitions of g, f, all but at most one component of $G-S^{\prime}$ are g-odd components. Thus we have $q\left(S^{\prime}, \emptyset\right) \geq \omega\left(G-S^{\prime}\right)-1$. We use Theorem 3. Since $f\left(S^{\prime}\right)=\left|S^{\prime}\right|$, we obtain by (7) that

$$
\eta\left(S^{\prime}, \emptyset\right)=f\left(S^{\prime}\right)-q\left(S^{\prime}, \emptyset\right) \leq\left|S^{\prime}\right|-\omega\left(G-S^{\prime}\right)+1 \leq-1
$$

Therefore G has no parity (g, f)-factor, which implies G has no H-factor.
We next prove the statement (ii). Let $H: V(G) \rightarrow\{\{1\},\{0,2\}\}$ be any set-valued function such that $\left|H^{-1}(1)\right|$ is odd. Let x be any chosen vertex of G, and define H^{x} as in (3). Then $\left(H^{x}\right)^{-1}(1)=H^{-1}(1) \cup\left\{x^{\prime}\right\}$ contains an even number of vertices. We shall show that G^{x} and g, f satisfy the condition of Theorem 3, where g and f are defined as in the previous proof of the statement (i) and $H^{x}\left(x^{\prime}\right)=\{1\}, f\left(x^{\prime}\right)=1$ and $g\left(x^{\prime}\right)=-M$. Let S and T be two disjoint subsets of $V\left(G^{x}\right)=V(G) \cup\left\{x^{\prime}\right\}$. By the same argument given above, we may assume that $T=\emptyset$. It follows that $\eta(\emptyset, \emptyset)=-q(\emptyset, \emptyset)=0$ since $f\left(V\left(G^{x}\right)\right) \equiv\left|\left(H^{x}\right)^{-1}(1)\right| \equiv 0(\bmod 2)$ and G^{x} is connected. Hence we may assume that $S \neq \emptyset$. If S contains x^{\prime}, then $\omega\left(G^{x}-S\right)=\omega\left(G-\left(S-\left\{x^{\prime}\right\}\right)\right)$, and so it follows from (6) that

$$
\eta\left(G^{x} ; S, \emptyset\right)=f(S)-q\left(G^{x} ; S, \emptyset\right) \geq|S|-\omega\left(G-\left(S-\left\{x^{\prime}\right\}\right)\right) \geq 1
$$

Hence we may assume that S does not contain x^{\prime}. If S does not contain x, then $\omega\left(G^{x}-S\right)=\omega(G-S)$, and so

$$
\eta\left(G^{x} ; S, \emptyset\right)=f(S)-q\left(G^{x} ; S, \emptyset\right) \geq|S|-\omega(G-S) \geq 0
$$

If S contains x, then $\omega\left(G^{x}-S\right)=\omega(G-S)+1$. Thus

$$
\begin{equation*}
\eta\left(G^{x} ; S, \emptyset\right)=f(S)-q\left(G^{x} ; S, \emptyset\right) \geq|S|-\omega(G-S)-1 \geq-1 \tag{8}
\end{equation*}
$$

On the other hand, since

$$
\sum_{v \in V\left(G^{x}\right)} f(v) \equiv\left|\left(H^{x}\right)^{-1}(1)\right| \equiv 0 \quad(\bmod 2),
$$

it follows from Lemma 4 and (8) that $\eta\left(G^{x} ; S, \emptyset\right) \geq 0$. Consequently G^{x} has an H^{x}-factor, and therefore G is H-critical.

Next we prove the necessity of (ii). Suppose that there exists a subset $\emptyset \neq S^{\prime} \subset V(G)$ such that

$$
\begin{equation*}
\omega\left(G-S^{\prime}\right) \geq\left|S^{\prime}\right|+1 \tag{9}
\end{equation*}
$$

Let $C_{1}, C_{2}, \ldots, C_{a}$ be the odd components of $G-S^{\prime}$, and $D_{1}, D_{2}, \ldots, D_{b}$ be the even components of $G-S^{\prime}$, where $\left|V\left(C_{i}\right)\right|$ is odd and $\left|V\left(D_{j}\right)\right|$ is even. If $b \geq 1$, then take a vertex $w_{i} \in D_{i}$ for every $1 \leq i \leq b$, and let $W \subseteq\left\{w_{i}: 1 \leq i \leq b\right\}$ such that $|W| \in\{b-1, b\}$ and $|V(G)|-|W|$ is odd. If $b=0$, then let $W \subseteq V\left(C_{1}\right)$ such that $|W| \in\{0,1\}$ and $|V(G)|-|W|$ is odd. Moreover, choose one vertex x from S^{\prime}, and let $G^{x}=G+x x^{\prime}$.

We define $H^{x}: V\left(G^{x}\right) \rightarrow\{\{1\},\{0,2\}\}$ as

$$
H^{x}(v)= \begin{cases}\{0,2\} & \text { if } v \in W \\ \{1\} & \text { otherwise }\end{cases}
$$

Then $\left(H^{x}\right)^{-1}(1)=(V(G)-W) \cup\left\{x^{\prime}\right\}$ and so $\left|\left(H^{x}\right)^{-1}(1)\right|$ is even. Let M be a sufficiently large odd integer, and define $f, g: V\left(G^{x}\right) \rightarrow \mathbf{Z}$ as

$$
f(v)= \begin{cases}2 & \text { if } v \in W \\ 1 & \text { otherwise }\end{cases}
$$

and

$$
g(v)= \begin{cases}-M-1 & \text { if } v \in W \\ -M & \text { otherwise }\end{cases}
$$

Then it is easy to see that G^{x} has an H^{x}-factor if and only if G^{x} has a parity (g, f)-factor. We use Theorem 3. Since $f\left(S^{\prime}\right)=\left|S^{\prime}\right|$ and $q\left(G^{x} ; S^{\prime}, \emptyset\right) \geq$ $\omega\left(G-S^{\prime}\right)-1+\left|\left\{x^{\prime}\right\}\right|=\omega\left(G-S^{\prime}\right)$, we obtain by (9) that

$$
\eta\left(G^{x} ; S^{\prime}, \emptyset\right)=f\left(S^{\prime}\right)-q\left(G^{x} ; S^{\prime}, \emptyset\right) \leq\left|S^{\prime}\right|-\omega\left(G-S^{\prime}\right) \leq-1 .
$$

Therefore G^{x} has no parity (g, f)-factor, which implies G is not H-critical. Consequently, the proof of Theorem 5 is complete.
Remark: Tutte's 1-Factor Theorem builds a relation between 1-factors and odd components. For an even component C, by picking a vertex $v \in V(C)$
and assigning $\{0,2\}$ to v, even component C becomes an H-odd component. Theorem 5 builds a relation between factors and 1-toughness. Consider Petersen Graph P, which is 1-tough. Let x_{1}, x_{2} be two adjacent vertices of P. Note that $P-x-y$ is a cycle of length eight C_{8}. We denote $C_{8}=v_{1} v_{2} \ldots, v_{8} v_{1}$. Define

$$
H(v)= \begin{cases}\{0,2\} & \text { if } v \in\left\{x_{1}, v_{1}, v_{2}\right\} \\ \{1\} & \text { otherwise }\end{cases}
$$

Then $\left\{x_{1}^{\prime} x_{1} x_{2}, v_{8} v_{1} v_{2} v_{3}, v_{4} v_{5}, v_{6} v_{7}\right\}$ is a $H^{x_{1}}$-factor of $P^{x_{1}}$.

3 \{(1,f)-odd, even\}-factors

In this section, we generalize Theorem 5 by using an odd integer valued function f. Let G be a graph, let $f: V(G) \rightarrow\{1,3,5, \ldots\}$ be a function, and let

$$
2 N=\max \{f(x): x \in V(G)\}+1
$$

be an even integer. Define a set-valued function H_{f} on $V(G)$ by

$$
\begin{equation*}
H_{f}(v)=\{1,3, \ldots, f(v)\} \quad \text { or } \quad\{0,2, \ldots, 2 N\} \quad \text { for each } v \in V(G) . \tag{10}
\end{equation*}
$$

Thus for a given function f, there are $2^{|V(G)|}$ set-valued functions H_{f}. For a set-valued function H_{f} on $V(G)$, define

$$
H_{f}^{-1}(f):=\left\{v \in V(G): H_{f}(v)=\{1,3, \ldots, f(v)\}\right\} .
$$

A spanning subgraph F of G is called an H_{f}-factor if $\operatorname{deg}_{F}(v) \in H_{f}(v)$ for all $v \in V(G)$. This H_{f}-factor is also called an $\{(1, f)$-odd,even $\}$-factor. For a vertex x of G, we define a graph $G^{x}=G+x x^{\prime}$. Moreover, for a function H_{f} on $V(G)$, define the function H_{f}^{x} on $V\left(G^{x}\right)$ as follows.

$$
H_{f}^{x}(v)= \begin{cases}\{1\} & \text { if } v=x^{\prime} \tag{11}\\ H_{f}(v) & \text { otherwise. }\end{cases}
$$

A graph is said to be H_{f}-critical or $\{(1, f)$-odd,even $\}$-critical if G^{x} has an H_{f}^{x}-factor for every vertex x of G.

In this section, we prove the following theorem.
Theorem 6 Let G be a connected graph, and let $f: V(G) \rightarrow\{1,3,5, \ldots\}$ be a function. Then the following two statements hold.
(i) G has an H_{f}-factor for every function H_{f} with $\left|H_{f}^{-1}(f)\right|$ even if and only if

$$
\begin{equation*}
\omega(G-S) \leq f(S)+1 \quad \text { for all } \quad S \subset V(G) \tag{12}
\end{equation*}
$$

(ii) G is H_{f}-critical for every function H_{f} with $\left|H_{f}^{-1}(f)\right|$ odd if and only if

$$
\begin{equation*}
\omega(G-S) \leq f(S) \quad \text { for all } \quad \emptyset \neq S \subset V(G) \tag{13}
\end{equation*}
$$

Proof. Since this theorem can be proved in a similar way as Theorem 5, we omit some details of the proof. We first prove the sufficiency for each of (i) and (ii). Assume that G satisfies (12). Let H_{f} be any set-valued function defined by (10) such that $\left|H_{f}^{-1}(f)\right|$ is even. Let M be a sufficiently large odd integer. Define $f_{1}, g_{1}: V(G) \rightarrow \mathbf{Z}$ as

$$
f_{1}(v)= \begin{cases}f(v) & \text { if } H_{f}(v)=\{1,3, \ldots, f(v)\} \\ 2 N & \text { otherwise }\end{cases}
$$

and

$$
g_{1}(v)= \begin{cases}-M & \text { if } H_{f}(v)=\{1,3, \ldots, f(v)\} \\ -M-1 & \text { otherwise }\end{cases}
$$

It is easy to see that G has an H_{f}-factor if and only if G has a parity $\left(g_{1}, f_{1}\right)$-factor. We use Theorem 3. Let S and T be two disjoint subsets of $V(G)$. If $T \neq \emptyset$, then $-g_{1}(T)$ is sufficiently large, and so $\eta(S, T) \geq 0$. Thus we may assume that $T=\emptyset$. It follows that $\eta(\emptyset, \emptyset)=-q(\emptyset, \emptyset)=0$ since $\left|H_{f}^{-1}(f)\right|$ is even and G is connected. Hence we may assume that $S \neq \emptyset$. By $f_{1}(S) \geq f(S), q(S, \emptyset) \leq \omega(G-S)$ and by (12), we have

$$
\eta(S, \emptyset)=f_{1}(S)-q(S, \emptyset) \geq f(S)-\omega(G-S) \geq-1
$$

Since $f_{1}(V(G)) \equiv\left|H_{f}^{-1}(f)\right| \equiv 0(\bmod 2)$, the above inequality implies $\eta(S, \emptyset) \geq$ 0 by Lemma 4 . Therefore G has the desired H_{f}-factor.

We next assume that G satisfies (13). In this case, it is also assumed that $\left|H_{f}^{-1}(f)\right|$ is odd. Let x be any chosen vertex of G. We shall show that G^{x} and f_{1}, g_{1} satisfy the conditions of Theorem 3 , where $f_{1}\left(x^{\prime}\right)=1$ and $g_{1}\left(x^{\prime}\right)=-M$. Let S and T be two disjoint subsets of $V\left(G^{x}\right)=V(G) \cup\left\{x^{\prime}\right\}$. By the same argument given above, we may assume $T=\emptyset$. It follows that $\eta\left(G^{x} ; \emptyset, \emptyset\right)=$ $-q\left(G^{x} ; \emptyset, \emptyset\right)=0$ since $\left\{v \in V\left(G^{x}\right): f_{1}(v) \equiv 1(\bmod 2)\right\}=\left\{x^{\prime}\right\} \cup H_{f}^{-1}(f)$ contains an even number of vertices and G^{x} is connected. Hence we may assume that $S \neq \emptyset$. If S contains x^{\prime}, then $\omega\left(G^{x}-S\right) \leq \omega\left(G-\left(S-x^{\prime}\right)\right)$, and so $\eta\left(G^{x} ; S, \emptyset\right) \geq f(S)-\omega\left(G-\left(S-x^{\prime}\right)\right) \geq 1$. Thus we may assume that S does not contain x^{\prime}. If S does not contain x, then $\omega\left(G^{x}-S\right)=\omega(G-S)$, and so $\eta\left(G^{x} ; S, \emptyset\right) \geq f(S)-\omega(G-S) \geq 0$. If S contains x, then $\omega\left(G^{x}-S\right)=$ $\omega(G-S)+1$, and thus $\eta\left(G^{x} ; S, \emptyset\right) \geq f(S)-\omega(G-S)-1 \geq-1$, which implies $\eta\left(G^{x} ; S, \emptyset\right) \geq 0$ by Lemma 4 and $f_{1}\left(V\left(G^{x}\right)\right) \equiv\left|H_{f}^{-1}(f) \cup\left\{x^{\prime}\right\}\right| \equiv 0$ $(\bmod 2)$. Therefore G^{x} has a H_{f}^{x}-factor. Consequently G is H_{f}-critical.

We now prove the necessity for each of (i) and (ii). First consider (i). Assume that there exists a subset $\emptyset \neq S^{\prime} \subset V(G)$ such that

$$
\begin{equation*}
\omega\left(G-S^{\prime}\right) \geq f\left(S^{\prime}\right)+2 \tag{14}
\end{equation*}
$$

Let $C_{1}, C_{2}, \ldots, C_{a}$ be the odd components of $G-S^{\prime}$, and let $D_{1}, D_{2}, \ldots, D_{b}$ be the even components of $G-S^{\prime}$. If $b \geq 1$, then take a vertex $w_{i} \in D_{i}$ for every $1 \leq i \leq b$, and let $W \subseteq\left\{w_{i}: 1 \leq i \leq b\right\}$ such that $|W| \in\{b-1, b\}$ and $|V(G)|-|W|$ is even. If $b=0$, then take $W \subseteq V\left(C_{1}\right)$ such that $|W| \in\{0,1\}$ and $|V(G)|-|W|$ is even.

We define $H_{f}: V(G) \rightarrow\{\{1,3, \ldots, f(v)\},\{0,2, \ldots, 2 N\}\}$ as

$$
H_{f}(v)= \begin{cases}\{0,2, \ldots, 2 N\} & \text { if } v \in W \\ \{1,3, \ldots, f(v)\} & \text { otherwise. }\end{cases}
$$

Then $\left|H_{f}^{-1}(f)\right|$ is even by $H_{f}^{-1}(f)=V(G)-W$ and by the choice of W. Let M be a sufficiently large odd integer, and define $f_{2}, g_{2}: V(G) \rightarrow \mathbf{Z}$ as

$$
f_{2}(v)= \begin{cases}2 N & \text { if } v \in W \\ f(v) & \text { otherwise }\end{cases}
$$

and

$$
g_{2}(v)= \begin{cases}-M-1 & \text { if } v \in W \\ -M & \text { otherwise } .\end{cases}
$$

Then G has an H_{f}-factor if and only if G has a parity $\left(g_{2}, f_{2}\right)$-factor. We use Theorem 3. Since $f_{2}\left(S^{\prime}\right)=f\left(S^{\prime}\right)$ and $q\left(S^{\prime}, \emptyset\right) \geq \omega\left(G-S^{\prime}\right)-1$, it follows from (14) that

$$
\eta\left(S^{\prime}, \emptyset\right)=f_{2}\left(S^{\prime}\right)-q\left(S^{\prime}, \emptyset\right) \leq f\left(S^{\prime}\right)-\omega\left(G-S^{\prime}\right)+1 \leq-1
$$

Therefore G has no parity $\left(g_{2}, f_{2}\right)$-factor, and thus G has no H_{f}-factor.
Next consider (ii). Suppose that there exists a subset $\emptyset \neq S^{\prime} \subset V(G)$ such that

$$
\begin{equation*}
\omega\left(G-S^{\prime}\right) \geq f\left(S^{\prime}\right)+1 \tag{15}
\end{equation*}
$$

Let $C_{1}, C_{2}, \ldots, C_{a}$ be the odd components of $G-S^{\prime}$, and $D_{1}, D_{2}, \ldots, D_{b}$ be the even components of $G-S^{\prime}$. If $b \geq 1$, then take a vertex $w_{i} \in D_{i}$ for every $1 \leq i \leq b$, and let $W \subseteq\left\{w_{i}: 1 \leq i \leq b\right\}$ such that $|W| \in\{b-1, b\}$ and $|V(G)|-|W|$ is odd. If $b=0$, then let $W \subseteq V\left(C_{1}\right)$ such that $|W| \in\{0,1\}$ and $|V(G)|-|W|$ is odd. Define a set-valued function H_{f} on $V(G)$ as

$$
H_{f}(v)= \begin{cases}\{0,2, \ldots, 2 N\} & \text { if } v \in W \\ \{1,3, \ldots, f(v)\} & \text { otherwise. }\end{cases}
$$

Then $\left|\left(H_{f}\right)^{-1}(f)\right|=|V(G)-W|$ is odd.
Choose one vertex x from S^{\prime}, and let $G^{x}=G+x x^{\prime}$. Then define a function H_{f}^{x} on $V\left(G^{x}\right)$ as in (11). Let M be a sufficiently large odd integer, and define $f_{2}, g_{2}: V\left(G^{x}\right) \rightarrow \mathbf{Z}$ as

$$
f_{2}(v)= \begin{cases}2 N & \text { if } v \in W \\ f(v) & \text { if } v \in V(G)-W \\ 1 & \text { if } v=x^{\prime}\end{cases}
$$

and

$$
g_{2}(v)= \begin{cases}-M-1 & \text { if } v \in W \\ -M & \text { if otherwise }\end{cases}
$$

Then it is easy to see that G^{x} has an H_{f}^{x}-factor if and only if G^{x} has a parity $\left(g_{2}, f_{2}\right)$-factor. We use Theorem 3. Since all but at most one component of $G-S^{\prime}$ are g_{2}-odd components, we have $q\left(G ; S^{\prime}, \emptyset\right) \geq \omega\left(G-S^{\prime}\right)-1$. Note that x^{\prime} is an isolated vertices of $G^{x}-S^{\prime}$ and $G-S^{\prime}=G^{x}-S^{\prime}-x^{\prime}$. Thus we have $q\left(G^{x} ; S^{\prime}, \emptyset\right) \geq \omega\left(G-S^{\prime}\right)-1+\left|\left\{x^{\prime}\right\}\right|=\omega\left(G-S^{\prime}\right)$. Since $f_{2}\left(S^{\prime}\right)=f\left(S^{\prime}\right)$, we obtain by (15) that

$$
\eta\left(G^{x} ; S^{\prime}, \emptyset\right)=f\left(S^{\prime}\right)-q\left(G^{x} ; S^{\prime}, \emptyset\right) \leq f\left(S^{\prime}\right)-\omega\left(G-S^{\prime}\right) \leq-1
$$

Therefore G^{x} has no parity $\left(g_{2}, f_{2}\right)$-factor, which implies G is not H_{f}-critical. Consequently, the proof of Theorem 6 is complete.

Acknowledgment The authors would like to thank Dr. Kenta Ozeki for his valuable suggestions and comments.

References

[1] J. Akiyama and M. Kano, Factors and Factorizations of Graphs, LNM 1031 (Springer), (2011).
[2] A. Amahashi, On factors with all degree odd, Graphs Combin., 1 (1985), 111-114.
[3] D. Bauer, S.L. Hakimi, E. Schmeichel, Recognizing tough graphs is NPhard, Discrete Appl. Math., 28 (1990), 191-195.
[4] G. Cornuéjols, General factors of graphs, J. Combin. Theory Ser. B, 45 (1988), 185-198.
[5] Y. Cui and M. Kano, Some results on odd factors of graphs, J. Graph Theory, 12 (1988), 327-333.
[6] Y. Egawa, M. Kano and Z. Yan, $(1, f)$-factors of graphs with odd property Graphs Combin., 32 (2016), 103-110.
[7] H. Enomoto, B. Jackson, P. Katerinis, A. Saito, Toughness and the existence of k-factors, J. Graph Theory, 9 (1985), 87-95.
[8] L. Lovász, The factorization of graphs. II, Acta Math. Hungar., 23 (1972), 223-246.
[9] H. Lu, An Extension of Cui-Kano's Characterization Problem on Graph Factors, J. Graph Theory, 81 (2016), 5-15.
[10] H. Lu and D.W.L. Wang, A Tutte-type characterization for graph factors, SIAM J. Discrete Math., 31 (2017), 1149-1159.
[11] W.T. Tutte, The factorization of linear graphs, J. London Math. Soc., 22 (1947), 107-111.
[12] W.T. Tutte, The 1-factors of oriented graphs, Proc. Amer. Math. Soc., 4 (1953), 922-931.

[^0]: *luhongliang@mail.xjtu.edu.cn; Supported by the National Natural Science Foundation of China under grant No. 11471257 and Fundamental Research Funds for the Central Universities
 ${ }^{\dagger}$ mikio.kano.math@vc.ibaraki.ac.jp; Supported by JSPS KAKENHI Grant Number 16K05248

