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Abstract

For a graph G, let odd(G) and ω(G) denote the number of odd
components and the number of components of G, respectively. Then
it is well-known that G has a 1-factor if and only if odd(G− S) ≤ |S|
for all S ⊂ V (G). Also it is clear that odd(G − S) ≤ ω(G − S). In
this paper we characterize a 1-tough graph G, which satisfies ω(G −
S) ≤ |S| for all ∅ ̸= S ⊂ V (G), using an H-factor of a set-valued
function H : V (G) → {{1}, {0, 2}}. Moreover, we generalize this
characterization to a graph that satisfies ω(G − S) ≤ f(S) for all
∅ ̸= S ⊂ V (G), where f : V (G) → {1, 3, 5, . . .}.

1 Introduction

We consider finite simple graphs, which have neither loops nor multiple edges.
Let G be a graph with vertex set V (G) and edge set E(G). We denote by
iso(G) and odd(G) the number of isolated vertices and the number of odd
components of G, respectively. For a set S of connected graphs, a spanning

∗luhongliang@mail.xjtu.edu.cn; Supported by the National Natural Science Founda-
tion of China under grant No.11471257 and Fundamental Research Funds for the Central
Universities

†mikio.kano.math@vc.ibaraki.ac.jp; Supported by JSPS KAKENHI Grant Number
16K05248

1



subgraph F of G is called an S-factor if each component of F is isomorphic
to an element of S. For example, let Cn denote the cycle of order n ≥ 3,
and let K2 denote the complete graph of order 2. Thus each component of
a {K2, Cn : n ≥ 3}-factor is K2 or a cycle, and a {K2}-factor is simply a
1-factor. A graph G is said to be factor-critical if for every vertex x of G,
G− x has a 1-factor. We begin with the 1-factor theorem.

Theorem 1 (The 1-factor theorem, [11] ) A connected graph G either
has a 1-factor or is factor-critical if and only if

odd(G− S) ≤ |S| for all ∅ ̸= S ⊂ V (G). (1)

Assume that a connected graph G satisfies (1). If G has even order,
then G has a 1-factor, otherwise, G is factor-critical. Moreover, the 1-factor
theorem is usually stated as follows: a graph G has a 1-factor if and only if
odd(G−S) ≤ |S| for all S ⊂ V (G). By letting S = ∅ in this form, we obtain
that every component of G is of even order. However as mentioned in the
above theorem, if we use ∅ ̸= S ⊂ V (G) instead of S ⊂ V (G), then the order
of G is not necessarily even, and if G has odd order and satisfies (1), then G
is factor-critical. This fact is shown as follows.

It is known that a graph H of even order satisfies odd(H − X) ≡ |X|
(mod 2) for every X ⊂ V (H). Assume that a connected graph G has odd
order and satisfies (1), and let x be any vertex of G. Then G − x has even
order, and for every S ⊂ V (G−x), it follows from (1) and the property given
above that

odd(G− x− S) = odd(G− (S ∪ {x})) ≤ |S ∪ {x}| = |S|+ 1 and

odd(G− x− S) ≡ |S| (mod 2).

Thus odd(G − x − S) ≤ |S|. So G − x has a 1-factor by the usual 1-factor
theorem, and hence G is factor-critical. Conversely, if G is factor-critical,
then for ∅ ̸= S ⊂ V (G) and y ∈ S, we have odd(G− S) = odd(G− y − (S −
y)) ≤ |S − y| ≤ |S| since G− y has a 1-factor. Hence (1) holds.

The next theorem is also well-known.

Theorem 2 ([12], Theorem 7.2 in [1]) A connected graph G of order at
least 2 has a {K2, Cn : n ≥ 3}-factor if and only if

iso(G− S) ≤ |S| for all ∅ ̸= S ⊂ V (G). (2)

Since iso(G−S) ≤ odd(G−S), if a connected graph G of order at least 2
satisfies (1), then G satisfies (2), and so G has a {K2, Cn : n ≥ 3}-factor. We
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can construct such a factor as follows. Assume that G satisfies (1). If G has
even order, then G has a 1-factor, which is clearly a {K2, Cn : n ≥ 3}-factor.
Assume that G has odd order, and let u and v be two adjacent vertices of G.
Since G is factor-critical, G− u has a 1-factor Mu and G− v has a 1-factor
Mv. Then Mu ∪Mv is a union of two matchings of G, and each component
of Mu ∪ Mv is a K2, an even cycle, or a path connecting u and v. Hence
(Mu ∪ Mv) + uv is a {K2, Cn : n ≥ 3}-factor of G, which contains at most
one odd cycle.

We denote by ω(G) the number of components ofG. A connected graphG
is said to be t-tough if |S| ≥ tω(G−S) for every S ⊂ V (G) with ω(G−S) > 1.
It is obvious that

iso(G− S) ≤ odd(G− S) ≤ ω(G− S) for all ∅ ̸= S ⊂ V (G).

In this paper, we first characterize a connected graph G that satisfies ω(G−
S) ≤ |S| for all ∅ ̸= S ⊂ V (G). Such a graph is called 1-tough. Bauer,
Hakimi and Schmeichel [3] showed that for any positive rational number t,
the t-tough problem, which is a problem of checking a graph to be t-tough
or not, is NP-Hard.

In this paper, we give a characterization of a 1-tough graph in terms of
graph factors. Later we generalize this characterization by using a function
f : V (G) → {1, 3, 5, . . .}. Some results related to our theorems are found in
[2, 4, 5, 6, 7, 9, 10].

2 Characterization of 1-tough graphs

In this section, we give a characterization of a graph G that satisfies ω(G−
S) ≤ |S| for all ∅ ̸= S ⊂ V (G). In order to state our theorem, we need some
notions and definitions. Let Z denote the set of integers. For two vertices x
and y of a graph, an edge joining x to y is denoted by xy or yx. The degree
of a vertex v in a subgraph H is denoted by degH(v). For two vertex sets X
and Y of G, not necessary to be disjoint, we denote by eG(X,Y ) the number
of edges of G joining a vertex of X to a vertex of Y . If C is a component of
G − S, then we briefly write eG(C, S) for eG(V (C), S). For a vertex set X
of G, the subgraph of G induced by X is denoted by ⟨X⟩G. For a function
h : V (G) → Z, a subset X ⊆ V (G) and a component C of G − S for some
S ⊂ V (G), we write

h(X) :=
∑
x∈X

h(x) and h(C) :=
∑

x∈V (C)

h(x).

3



For any vertex x of G, let Gx denote the graph obtained from G by adding
a new vertex x′ together with a new edge xx′, that is, Gx = G + xx′. Let
H : V (G) → {{1}, {0, 2}} be a set-valued function. So H(v) is equal to {1}
or {0, 2} for each vertex v. We write

H−1(1) := {v ∈ V (G) : H(v) = {1}}.

A spanning subgraph F of G is called an H-factor if degF (v) ∈ H(v) for all
v ∈ V (G). This H-factor is also called a {1,{0,2}}-factor. It is clear that if
G has an H-factor, then |H−1(1)| must be even by the Handshaking Lemma.
So if |H−1(1)| is odd, then G has no H-factor. For a function H : V (G) →
{{1}, {0, 2}} and a vertex x of G, we define Hx : V (Gx) → {{1}, {0, 2}} as
follows.

Hx(v) =

{
{1} if v = x′,
H(v) otherwise.

(3)

A graph G is said to be H-critical or {1,{0,2}}-critical if Gx has an Hx-factor
for every vertex x of G.

Let g, f : V (G) → Z be functions such that g(v) ≤ f(v) and g(v) ≡ f(v)
(mod 2) for all v ∈ V (G), where we allow that g(x) < 0 and degG(y) < f(y)
for some vertices x and y (see Theorem 6.1 in [1]). Then a spanning subgraph
F of G is called a parity (g, f)-factor if

g(v) ≤ degF (v) ≤ f(v) and degF (v) ≡ f(v) (mod 2)

for all v ∈ V (G). The following theorem gives a criterion for a graph to have
a parity (g, f)-factor.

Theorem 3 (Lovász, [8], Theorem 6.1 in [1]) Let G be a connected graph
and g, f : V (G) → Z such that g(v) ≤ f(v) and g(v) ≡ f(v) (mod 2) for
all v ∈ V (G). Then G has a parity (g, f)-factor if and only if for any two
disjoint subsets S, T of V (G),

η(S, T ) = f(S)− g(T ) +
∑
x∈T

degG(x) − eG(S, T )− q(S, T ) ≥ 0, (4)

where q(S, T ) denotes the number of components C of G−S−T , called g-odd
components, such that f(C) + eG(C, T ) ≡ 1 (mod 2). If necessary, we write
η(G;S, T ) and q(G;S, T ) for η(S, T ) and q(S, T ) to express the graph G.

Note that if (4) holds, then η(∅, ∅) = −q(∅, ∅) ≥ 0, which implies that
|f(V (G))| ≡ 0 (mod 2). The following lemma will prove useful.
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Lemma 4 Let G, g, f , S, T and η(S, T ) be the same as Theorem 3. Then

η(S, T ) ≡ f(V (G)) ≡
∑

x∈V (G)

f(x) (mod 2).

Proof. Let C1, C2, . . . , Cm be the g-odd components of G− (S ∪ T ), and let
D1, D2, . . . , Dr be the other components of G− (S ∪ T ). Then m = q(S, T ),
f(Ci) + eG(Ci, T ) ≡ 1 (mod 2) for 1 ≤ i ≤ m, and f(Dj) + eG(Dj, T ) ≡ 0
(mod 2) for 1 ≤ j ≤ r. Hence

m ≡
m∑
i=1

(f(Ci) + eG(Ci, T )) +
r∑

j=1

(f(Dj) + eG(Dj, T ))

≡
∑

x∈V (G)−(S∪T )

f(x) + eG(V (G)− (S ∪ T ), T ) (mod 2).

Since g(x) ≡ f(x) (mod 2) and −k ≡ k (mod 2) for every integer k, we have
the following.

η(S, T ) ≡ f(S) + f(T ) +
∑
x∈T

degG(x) + eG(S, T ) +m

≡ f(S) + f(T ) + eG(V (G), T ) + eG(S, T )

+
∑

x∈V (G)−(S∪T )

f(x) + eG(V (G)− (S ∪ T ), T )

=
∑

x∈V (G)

f(x) + eG(V (G), T ) + eG(V (G)− T, T )

= f(V (G)) + 2|E(⟨T ⟩G)| (by eG(T, T ) = 2|E(⟨T ⟩G)|)

≡
∑

x∈V (G)

f(x) (mod 2).

Therefore the lemma holds. 2

The next theorem is our first result, which gives a characterization of a
1-tough graph.

Theorem 5 Let G be a connected graph. Then the following two statements
hold.

(i) G has an H-factor for every H : V (G) → {{1}, {0, 2}} with |H−1(1)|
even if and only if

ω(G− S) ≤ |S|+ 1 for all S ⊂ V (G). (5)
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(ii) G is H-critical for every H : V (G) → {{1}, {0, 2}} with |H−1(1)| odd if
and only if

ω(G− S) ≤ |S| for all ∅ ̸= S ⊂ V (G). (6)

Proof. We first prove the statement (i), starting with sufficiency. Let H :
V (G) → {{1}, {0, 2}} be any set-valued function such that |H−1(1)| is even.
Let M be a sufficiently large odd integer. Define f : V (G) → Z as

f(v) =

{
1 if H(v) = {1},
2 otherwise.

Next define g : V (G) → Z as

g(v) =

{
−M if H(v) = {1},
−M − 1 otherwise.

Then it is easy to see that G has an H-factor if and only if G has a parity
(g, f)-factor. We use Theorem 3. Let S and T be two disjoint subsets of
V (G). If T ̸= ∅, then −g(T ) is sufficiently large, and so

η(S, T ) = f(S)− g(T ) +
∑
x∈T

degG(x)− eG(S, T )− q(S, T ) ≥ 0.

Thus we may assume that T = ∅. It follows that η(∅, ∅) = −q(∅, ∅) = 0
since f(V (G)) ≡ |H−1(1)| ≡ 0 (mod 2) and G is connected. Hence we may
assume S ̸= ∅. By q(S, ∅) ≤ ω(G− S) and (5), we have

η(S, ∅) = f(S)− q(S, ∅) ≥ |S| − ω(G− S) ≥ −1.

By f(V (G)) ≡ 0 (mod 2) and Lemma 4, the above inequality implies η(S, ∅) ≥
0. Therefore G has the desired H-factor.

We now prove the necessity. Suppose that there exists a subset ∅ ̸= S ′ ⊂
V (G) such that

ω(G− S ′) ≥ |S ′|+ 2. (7)

Let C1, C2, . . . , Ca be the odd components of G− S ′, and let D1, D2, . . . , Db

be the even components of G − S ′, where |V (Ci)| is odd and |V (Dj)| is
even. If b ≥ 1, then take a vertex wi ∈ Di for every 1 ≤ i ≤ b, and let
W ⊆ {wi : 1 ≤ i ≤ b} such that |W | ∈ {b − 1, b} and |V (G)| − |W | is even.
If b = 0, then take W ⊆ V (C1) such that |W | ∈ {0, 1} and |V (G)| − |W | is
even.
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We define H : V (G) → {{1}, {0, 2}} as

H(v) =

{
{0, 2} if v ∈ W ,
{1} otherwise.

Then |H−1(1)| is even by H−1(1) = V (G)−W and by the choice of W . Let
M be a sufficiently large odd integer, and define f, g : V (G) → Z as

f(v) =

{
2 if v ∈ W
1 otherwise,

and

g(v) =

{
−M − 1 if v ∈ W
−M otherwise.

Then it is easy to see that G has an H-factor if and only if G has a parity
(g, f)-factor. By the definitions of g, f , all but at most one component of
G − S ′ are g-odd components. Thus we have q(S ′, ∅) ≥ ω(G − S ′) − 1. We
use Theorem 3. Since f(S ′) = |S ′|, we obtain by (7) that

η(S ′, ∅) = f(S ′)− q(S ′, ∅) ≤ |S ′| − ω(G− S ′) + 1 ≤ −1.

Therefore G has no parity (g, f)-factor, which implies G has no H-factor.

We next prove the statement (ii). Let H : V (G) → {{1}, {0, 2}} be any
set-valued function such that |H−1(1)| is odd. Let x be any chosen vertex
of G, and define Hx as in (3). Then (Hx)−1(1) = H−1(1) ∪ {x′} contains an
even number of vertices. We shall show that Gx and g, f satisfy the condition
of Theorem 3, where g and f are defined as in the previous proof of the
statement (i) and Hx(x′) = {1}, f(x′) = 1 and g(x′) = −M . Let S and T be
two disjoint subsets of V (Gx) = V (G) ∪ {x′}. By the same argument given
above, we may assume that T = ∅. It follows that η(∅, ∅) = −q(∅, ∅) = 0
since f(V (Gx)) ≡ |(Hx)−1(1)| ≡ 0 (mod 2) and Gx is connected. Hence we
may assume that S ̸= ∅. If S contains x′, then ω(Gx−S) = ω(G−(S−{x′})),
and so it follows from (6) that

η(Gx;S, ∅) = f(S)− q(Gx;S, ∅) ≥ |S| − ω(G− (S − {x′})) ≥ 1.

Hence we may assume that S does not contain x′. If S does not contain x,
then ω(Gx − S) = ω(G− S), and so

η(Gx;S, ∅) = f(S)− q(Gx;S, ∅) ≥ |S| − ω(G− S) ≥ 0.

If S contains x, then ω(Gx − S) = ω(G− S) + 1. Thus

η(Gx;S, ∅) = f(S)− q(Gx;S, ∅) ≥ |S| − ω(G− S)− 1 ≥ −1. (8)
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On the other hand, since∑
v∈V (Gx)

f(v) ≡ |(Hx)−1(1)| ≡ 0 (mod 2),

it follows from Lemma 4 and (8) that η(Gx;S, ∅) ≥ 0. Consequently Gx has
an Hx-factor, and therefore G is H-critical.

Next we prove the necessity of (ii). Suppose that there exists a subset
∅ ̸= S ′ ⊂ V (G) such that

ω(G− S ′) ≥ |S ′|+ 1. (9)

Let C1, C2, . . . , Ca be the odd components of G − S ′, and D1, D2, . . . , Db

be the even components of G − S ′, where |V (Ci)| is odd and |V (Dj)| is
even. If b ≥ 1, then take a vertex wi ∈ Di for every 1 ≤ i ≤ b, and let
W ⊆ {wi : 1 ≤ i ≤ b} such that |W | ∈ {b− 1, b} and |V (G)| − |W | is odd. If
b = 0, then let W ⊆ V (C1) such that |W | ∈ {0, 1} and |V (G)| − |W | is odd.
Moreover, choose one vertex x from S ′, and let Gx = G+ xx′.

We define Hx : V (Gx) → {{1}, {0, 2}} as

Hx(v) =

{
{0, 2} if v ∈ W ,
{1} otherwise.

Then (Hx)−1(1) = (V (G)−W )∪ {x′} and so |(Hx)−1(1)| is even. Let M be
a sufficiently large odd integer, and define f, g : V (Gx) → Z as

f(v) =

{
2 if v ∈ W
1 otherwise,

and

g(v) =

{
−M − 1 if v ∈ W
−M otherwise.

Then it is easy to see that Gx has an Hx-factor if and only if Gx has a parity
(g, f)-factor. We use Theorem 3. Since f(S ′) = |S ′| and q(Gx;S ′, ∅) ≥
ω(G− S ′)− 1 + |{x′}| = ω(G− S ′), we obtain by (9) that

η(Gx;S ′, ∅) = f(S ′)− q(Gx;S ′, ∅) ≤ |S ′| − ω(G− S ′) ≤ −1.

Therefore Gx has no parity (g, f)-factor, which implies G is not H-critical.
Consequently, the proof of Theorem 5 is complete. 2

Remark: Tutte’s 1-Factor Theorem builds a relation between 1-factors and
odd components. For an even component C, by picking a vertex v ∈ V (C)

8



and assigning {0, 2} to v, even component C becomes an H-odd component.
Theorem 5 builds a relation between factors and 1-toughness. Consider Pe-
tersen Graph P , which is 1-tough. Let x1, x2 be two adjacent vertices of P .
Note that P−x−y is a cycle of length eight C8. We denote C8 = v1v2 . . . , v8v1.
Define

H(v) =

{
{0, 2} if v ∈ {x1, v1, v2},
{1} otherwise.

Then {x′
1x1x2, v8v1v2v3, v4v5, v6v7} is a Hx1-factor of P x1 .

3 {(1,f)-odd, even}-factors
In this section, we generalize Theorem 5 by using an odd integer valued
function f . Let G be a graph, let f : V (G) → {1, 3, 5, . . .} be a function, and
let

2N = max{f(x) : x ∈ V (G)} + 1

be an even integer. Define a set-valued function Hf on V (G) by

Hf (v) = {1, 3, . . . , f(v)} or {0, 2, . . . , 2N} for each v ∈ V (G). (10)

Thus for a given function f , there are 2|V (G)| set-valued functions Hf . For a
set-valued function Hf on V (G), define

H−1
f (f) := {v ∈ V (G) : Hf (v) = {1, 3, . . . , f(v)} }.

A spanning subgraph F of G is called an Hf -factor if degF (v) ∈ Hf (v) for
all v ∈ V (G). This Hf -factor is also called an {(1,f)-odd,even}-factor. For a
vertex x of G, we define a graph Gx = G+ xx′. Moreover, for a function Hf

on V (G), define the function Hx
f on V (Gx) as follows.

Hx
f (v) =

{
{1} if v = x′,
Hf (v) otherwise.

(11)

A graph is said to be Hf -critical or {(1,f)-odd,even}-critical if Gx has an
Hx

f -factor for every vertex x of G.
In this section, we prove the following theorem.

Theorem 6 Let G be a connected graph, and let f : V (G) → {1, 3, 5, . . .} be
a function. Then the following two statements hold.

(i) G has an Hf -factor for every function Hf with |H−1
f (f)| even if and only

if

ω(G− S) ≤ f(S) + 1 for all S ⊂ V (G). (12)
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(ii) G is Hf -critical for every function Hf with |H−1
f (f)| odd if and only if

ω(G− S) ≤ f(S) for all ∅ ̸= S ⊂ V (G). (13)

Proof. Since this theorem can be proved in a similar way as Theorem 5, we
omit some details of the proof. We first prove the sufficiency for each of (i)
and (ii). Assume that G satisfies (12). Let Hf be any set-valued function
defined by (10) such that |H−1

f (f)| is even. Let M be a sufficiently large odd
integer. Define f1, g1 : V (G) → Z as

f1(v) =

{
f(v) if Hf (v) = {1, 3, . . . , f(v)},
2N otherwise,

and

g1(v) =

{
−M if Hf (v) = {1, 3, . . . , f(v)},
−M − 1 otherwise.

It is easy to see that G has an Hf -factor if and only if G has a parity
(g1, f1)-factor. We use Theorem 3. Let S and T be two disjoint subsets of
V (G). If T ̸= ∅, then −g1(T ) is sufficiently large, and so η(S, T ) ≥ 0. Thus
we may assume that T = ∅. It follows that η(∅, ∅) = −q(∅, ∅) = 0 since
|H−1

f (f)| is even and G is connected. Hence we may assume that S ̸= ∅. By
f1(S) ≥ f(S), q(S, ∅) ≤ ω(G− S) and by (12), we have

η(S, ∅) = f1(S)− q(S, ∅) ≥ f(S)− ω(G− S) ≥ −1.

Since f1(V (G)) ≡ |H−1
f (f)| ≡ 0 (mod 2), the above inequality implies η(S, ∅) ≥

0 by Lemma 4. Therefore G has the desired Hf -factor.

We next assume that G satisfies (13). In this case, it is also assumed that
|H−1

f (f)| is odd. Let x be any chosen vertex of G. We shall show that Gx and
f1, g1 satisfy the conditions of Theorem 3, where f1(x

′) = 1 and g1(x
′) = −M .

Let S and T be two disjoint subsets of V (Gx) = V (G) ∪ {x′}. By the same
argument given above, we may assume T = ∅. It follows that η(Gx; ∅, ∅) =
−q(Gx; ∅, ∅) = 0 since {v ∈ V (Gx) : f1(v) ≡ 1 (mod 2)} = {x′} ∪ H−1

f (f)
contains an even number of vertices and Gx is connected. Hence we may
assume that S ̸= ∅. If S contains x′, then ω(Gx −S) ≤ ω(G− (S − x′)), and
so η(Gx;S, ∅) ≥ f(S) − ω(G − (S − x′)) ≥ 1. Thus we may assume that S
does not contain x′. If S does not contain x, then ω(Gx − S) = ω(G − S),
and so η(Gx;S, ∅) ≥ f(S)−ω(G−S) ≥ 0. If S contains x, then ω(Gx−S) =
ω(G − S) + 1, and thus η(Gx;S, ∅) ≥ f(S) − ω(G − S) − 1 ≥ −1, which
implies η(Gx;S, ∅) ≥ 0 by Lemma 4 and f1(V (Gx)) ≡ |H−1

f (f) ∪ {x′}| ≡ 0
(mod 2). Therefore Gx has a Hx

f -factor. Consequently G is Hf -critical.
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We now prove the necessity for each of (i) and (ii). First consider (i).
Assume that there exists a subset ∅ ̸= S ′ ⊂ V (G) such that

ω(G− S ′) ≥ f(S ′) + 2. (14)

Let C1, C2, . . . , Ca be the odd components of G− S ′, and let D1, D2, . . . , Db

be the even components of G − S ′. If b ≥ 1, then take a vertex wi ∈ Di for
every 1 ≤ i ≤ b, and let W ⊆ {wi : 1 ≤ i ≤ b} such that |W | ∈ {b− 1, b} and
|V (G)| − |W | is even. If b = 0, then take W ⊆ V (C1) such that |W | ∈ {0, 1}
and |V (G)| − |W | is even.

We define Hf : V (G) → {{1, 3, . . . , f(v)}, {0, 2, . . . , 2N}} as

Hf (v) =

{
{0, 2, . . . , 2N} if v ∈ W ,
{1, 3, . . . , f(v)} otherwise.

Then |H−1
f (f)| is even by H−1

f (f) = V (G)−W and by the choice of W . Let
M be a sufficiently large odd integer, and define f2, g2 : V (G) → Z as

f2(v) =

{
2N if v ∈ W
f(v) otherwise,

and

g2(v) =

{
−M − 1 if v ∈ W
−M otherwise.

Then G has an Hf -factor if and only if G has a parity (g2, f2)-factor. We
use Theorem 3. Since f2(S

′) = f(S ′) and q(S ′, ∅) ≥ ω(G− S ′)− 1, it follows
from (14) that

η(S ′, ∅) = f2(S
′)− q(S ′, ∅) ≤ f(S ′)− ω(G− S ′) + 1 ≤ −1.

Therefore G has no parity (g2, f2)-factor, and thus G has no Hf -factor.

Next consider (ii). Suppose that there exists a subset ∅ ̸= S ′ ⊂ V (G)
such that

ω(G− S ′) ≥ f(S ′) + 1. (15)

Let C1, C2, . . . , Ca be the odd components of G− S ′, and D1, D2, . . . , Db be
the even components of G − S ′. If b ≥ 1, then take a vertex wi ∈ Di for
every 1 ≤ i ≤ b, and let W ⊆ {wi : 1 ≤ i ≤ b} such that |W | ∈ {b− 1, b} and
|V (G)| − |W | is odd. If b = 0, then let W ⊆ V (C1) such that |W | ∈ {0, 1}
and |V (G)| − |W | is odd. Define a set-valued function Hf on V (G) as

Hf (v) =

{
{0, 2, . . . , 2N} if v ∈ W ,
{1, 3, . . . , f(v)} otherwise.
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Then |(Hf )
−1(f)| = |V (G)−W | is odd.

Choose one vertex x from S ′, and let Gx = G + xx′. Then define a
function Hx

f on V (Gx) as in (11). Let M be a sufficiently large odd integer,
and define f2, g2 : V (Gx) → Z as

f2(v) =


2N if v ∈ W ,
f(v) if v ∈ V (G)−W ,
1 if v = x′.

and

g2(v) =

{
−M − 1 if v ∈ W
−M if otherwise.

Then it is easy to see that Gx has an Hx
f -factor if and only if Gx has a parity

(g2, f2)-factor. We use Theorem 3. Since all but at most one component of
G − S ′ are g2-odd components, we have q(G;S ′, ∅) ≥ ω(G − S ′) − 1. Note
that x′ is an isolated vertices of Gx−S ′ and G−S ′ = Gx−S ′−x′. Thus we
have q(Gx;S ′, ∅) ≥ ω(G−S ′)− 1+ |{x′}| = ω(G−S ′). Since f2(S

′) = f(S ′),
we obtain by (15) that

η(Gx;S ′, ∅) = f(S ′)− q(Gx;S ′, ∅) ≤ f(S ′)− ω(G− S ′) ≤ −1.

Therefore Gx has no parity (g2, f2)-factor, which implies G is not Hf -critical.
Consequently, the proof of Theorem 6 is complete. 2
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