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Abstract

For a graph G, let 0odd(G) and w(G) denote the number of odd
components and the number of components of G, respectively. Then
it is well-known that G has a 1-factor if and only if odd(G — S) < |S]
for all S C V(G). Also it is clear that odd(G — S) < w(G — S). In
this paper we characterize a 1-tough graph G, which satisfies w(G —
S) < |S| for all B # S C V(G), using an H-factor of a set-valued
function H : V(G) — {{1},{0,2}}. Moreover, we generalize this
characterization to a graph that satisfies w(G — S) < f(S) for all
0 #£S cCV(G), where f: V(G) = {1,3,5,...}.

1 Introduction

We consider finite simple graphs, which have neither loops nor multiple edges.
Let G be a graph with vertex set V(G) and edge set E(G). We denote by
iso(G) and odd(G) the number of isolated vertices and the number of odd
components of G, respectively. For a set S of connected graphs, a spanning
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subgraph F' of GG is called an S-factor if each component of F' is isomorphic
to an element of S. For example, let (), denote the cycle of order n > 3,
and let K5 denote the complete graph of order 2. Thus each component of
a {K3,C, : n > 3}-factor is K5 or a cycle, and a {Ks}-factor is simply a
1-factor. A graph G is said to be factor-critical if for every vertex x of G,
G — x has a 1-factor. We begin with the 1-factor theorem.

Theorem 1 (The 1-factor theorem, [11] ) A connected graph G either
has a 1-factor or is factor-critical if and only if

odd(G — S) < |S] forall 0 #SCV(G). (1)

Assume that a connected graph G satisfies (1). If G has even order,
then G has a 1-factor, otherwise, G is factor-critical. Moreover, the 1-factor
theorem is usually stated as follows: a graph G has a 1-factor if and only if
odd(G — S) < |S| for all S C V(G). By letting S = ) in this form, we obtain
that every component of G is of even order. However as mentioned in the
above theorem, if we use ) # S C V(G) instead of S C V(G), then the order
of G is not necessarily even, and if G has odd order and satisfies (1), then G
is factor-critical. This fact is shown as follows.

It is known that a graph H of even order satisfies odd(H — X) = |X|
(mod 2) for every X C V(H). Assume that a connected graph G has odd
order and satisfies (1), and let x be any vertex of G. Then G — z has even
order, and for every S C V(G —x), it follows from (1) and the property given
above that

odd(G —x —S)=o0dd(G — (SU{z})) <|SU{z}| =S|+ 1 and
odd(G —z—S)=1S| (mod 2).

Thus odd(G — x — S) < |S|. So G — z has a 1-factor by the usual 1-factor
theorem, and hence G is factor-critical. Conversely, if G is factor-critical,
then for ) # S C V(G) and y € S, we have odd(G — S) = odd(G — y — (S —
y)) < |S —y| < |S] since G — y has a 1-factor. Hence (1) holds.

The next theorem is also well-known.

Theorem 2 ([12], Theorem 7.2 in [1]) A connected graph G of order at
least 2 has a { Ky, C,, : n > 3}-factor if and only if

iso(G—S) <|S| forall 0+ S CV(G). (2)

Since iso(G — S) < odd(G — S), if a connected graph G of order at least 2
satisfies (1), then G satisfies (2), and so G has a { K, C), : n > 3}-factor. We



can construct such a factor as follows. Assume that G satisfies (1). If G has
even order, then G has a 1-factor, which is clearly a { Ky, C, : n > 3}-factor.
Assume that GG has odd order, and let v and v be two adjacent vertices of G.
Since G is factor-critical, G — u has a 1-factor M, and G — v has a 1-factor
M,. Then M, U M, is a union of two matchings of G, and each component
of M, UM, is a Ks, an even cycle, or a path connecting v and v. Hence
(M, U M,) 4+ uv is a {Ks,C,, : n > 3}-factor of G, which contains at most
one odd cycle.

We denote by w(G) the number of components of G. A connected graph G
is said to be t-tough if |S| > tw(G—S) for every S C V(G) with w(G—S) > 1.
It is obvious that

iso(G —S) < o0dd(G—95) <w(G—19) forall 0 #ScCV(G).

In this paper, we first characterize a connected graph G that satisfies w(G —
S) < |S| for all § # S C V(G). Such a graph is called I-tough. Bauer,
Hakimi and Schmeichel [3] showed that for any positive rational number ¢,
the t-tough problem, which is a problem of checking a graph to be t-tough
or not, is NP-Hard.

In this paper, we give a characterization of a 1-tough graph in terms of
graph factors. Later we generalize this characterization by using a function
f:V(GQ) = {1,3,5,...}. Some results related to our theorems are found in
[2,4,5,6,7,9, 10].

2 Characterization of 1-tough graphs

In this section, we give a characterization of a graph G that satisfies w(G —
S) < |S] for all ) #£ S C V(G). In order to state our theorem, we need some
notions and definitions. Let Z denote the set of integers. For two vertices x
and y of a graph, an edge joining x to y is denoted by xy or yx. The degree
of a vertex v in a subgraph H is denoted by degy(v). For two vertex sets X
and Y of G, not necessary to be disjoint, we denote by eg(X,Y’) the number
of edges of GG joining a vertex of X to a vertex of Y. If C' is a component of
G — S, then we briefly write eq(C, S) for eq(V(C),S). For a vertex set X
of G, the subgraph of G induced by X is denoted by (X)g. For a function
h:V(G) — Z, a subset X C V(@) and a component C' of G — S for some
S C V(G), we write

WX):=> h(z) and h(C):= > h(z).

rzeX zeV(C)



For any vertex x of GG, let G* denote the graph obtained from G by adding
a new vertex x’ together with a new edge za’, that is, G* = G + z2’. Let
H :V(G) — {{1},{0,2}} be a set-valued function. So H(v) is equal to {1}
or {0,2} for each vertex v. We write

H'(1) = {veV(G): H(v) = {1}}.

A spanning subgraph F' of G is called an H -factor if degp(v) € H(v) for all
v € V(G). This H-factor is also called a {1,{0,2}}-factor. 1t is clear that if
G has an H-factor, then |H (1) must be even by the Handshaking Lemma.
So if [H71(1)| is odd, then G has no H-factor. For a function H : V(G) —
{{1},{0,2}} and a vertex = of G, we define H* : V/(G*) — {{1},{0,2}} as

follows.

e {1} ifv=2a,

H*(v) = { H(v) otherwise. (3)

A graph G is said to be H-critical or {1,{0,2}}-critical if G* has an H*-factor
for every vertex x of G.

Let g, f : V(G) — Z be functions such that g(v) < f(v) and g(v) = f(v)

(mod 2) for all v € V(G), where we allow that g(z) < 0 and degq(y) < f(y)

for some vertices x and y (see Theorem 6.1 in [1]). Then a spanning subgraph
F of G is called a parity (g, f)-factor if

9(v) < degp(v) < f(v) and  degp(v) = f(v) (mod 2)

for all v € V(G). The following theorem gives a criterion for a graph to have
a parity (g, f)-factor.

Theorem 3 (Lovasz, [8], Theorem 6.1 in [1]) Let G be a connected graph
and g, f : V(G) — Z such that g(v) < f(v) and g(v) = f(v) (mod 2) for
all v € V(G). Then G has a parity (g, f)-factor if and only if for any two
disjoint subsets S, T of V(QG),

(S, T) = f(S) = g(T) + Y _degg(z) —ea(S,T)—q(S,T) >0, (4)

where q(S,T) denotes the number of components C' of G—S—T, called g-odd
components, such that f(C) + eq(C,T) =1 (mod 2). If necessary, we write
n(G; S, T) and q(G; S, T) for n(S,T) and q(S,T) to express the graph G.

Note that if (4) holds, then n(,0) = —q(?,0) > 0, which implies that
If(V(G))] =0 (mod 2). The following lemma will prove useful.
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Lemma 4 Let G, g, f, S, T and n(S,T) be the same as Theorem 3. Then

n(S,T) = ) = Z f(z) (mod 2).

zeV(G

Proof. Let Cy,Cy, ..., C,, be the g-odd components of G — (SUT), and let
Dy, Ds, ..., D, be the other components of G — (SUT'). Then m = ¢(S,T),
f(C) +eq(Ci,T) =1 (mod 2) for 1 < i < m, and f(D;) + eq(D;,T) =0
(mod 2) for 1 < j <r. Hence

m

m =Y (f(Ci) +ec(Ci,T)) +Z D;) +eq(D;,T))

i=1 j=1

Z fx)+ec(V(G)—(SUT),T) (mod 2).

zeV(G)—(SUT)

Since g(z) = f(x) (mod 2) and —k = k (mod 2) for every integer k, we have
the following.

n(S,T) = ZdegG +eq(S,T) +

= f(9) + f(T) +ec(V(G).T) + ec(S,T)
+ Y f@) +ea(V(G) = (SUT),T)

eV (G)—(SUT)
= Y f(@)+ec(V(G),T)+ec(V(G) —T,T)

zeV(G)

= f(V(G) +21E(T)a)|  (by ea(T,T) = 2[E((T)c)])

> f(z) (mod 2).

zeV(G)

Therefore the lemma holds. O

The next theorem is our first result, which gives a characterization of a
1-tough graph.

Theorem 5 Let G be a connected graph. Then the following two statements
hold.

(i) G has an H-factor for every H : V(G) — {{1},{0,2}} with |[H~'(1)|

even if and only if
w(G@—=9)<|S|+1 forall ScCV(G). (5)

b}



(ii) G is H-critical for every H : V(G) — {{1},{0,2}} with |H=*(1)| odd if
and only if

w(G—S)<|S| foral 0#ScCV(Q). (6)

Proof. We first prove the statement (i), starting with sufficiency. Let H :
V(G) — {{1},{0,2}} be any set-valued function such that |H~'(1)] is even.
Let M be a sufficiently large odd integer. Define f : V(G) — Z as

£(0) :{ 1 if H(v) = {1},

2 otherwise.

Next define g : V(G) — Z as

o(v) = { —M if H(v) = {1},

—M — 1 otherwise.

Then it is easy to see that G has an H-factor if and only if G has a parity
(g, f)-factor. We use Theorem 3. Let S and T be two disjoint subsets of
V(G). If T # (), then —g(T) is sufficiently large, and so

(S, T) = f(S) — g(T) + Y _ degg(z) — ec(S,T) — (S, T) > 0.

zeT

Thus we may assume that T = ). It follows that 7n(0,0) = —q(0,0) = 0
since f(V(G)) = |H*(1)] =0 (mod 2) and G is connected. Hence we may
assume S # (. By ¢(S,0) < w(G — S) and (5), we have

(S, 0) = f(5) = q(5,0) 2 |S] —w(G = 5) = 1.

By f(V(G)) =0 (mod 2) and Lemma 4, the above inequality implies (.S, ) >
0. Therefore G has the desired H-factor.

We now prove the necessity. Suppose that there exists a subset () # S’ C
V(G) such that

W(G— S >8] +2. (7)

Let C1,Cy,...,C, be the odd components of G — S’, and let Dy, Ds, ..., Dy
be the even components of G — S, where |V(C;)| is odd and |[V(D;)] is
even. If b > 1, then take a vertex w; € D; for every 1 < ¢ < b, and let
W C {w; : 1 <i < b} such that [W| € {b—1,b} and |V(G)| — |W] is even.
If b =0, then take W C V(C) such that |W| € {0,1} and |V(G)| — |W] is

eveln.



We define H : V(G) — {{1},{0,2}} as

10,2} ifveW,
H(v) = { {1}  otherwise.

Then |H~!(1)] is even by H~'(1) = V(G) — W and by the choice of W. Let
M be a sufficiently large odd integer, and define f, g : V(G) — Z as

f(v):{2 ifvew

1 otherwise,

and

M—1 ifveWw
g(v) =

-M otherwise.

Then it is easy to see that G has an H-factor if and only if G has a parity
(g, f)-factor. By the definitions of g, f, all but at most one component of
G — S are g-odd components. Thus we have ¢(S’,0) > w(G — S5’) — 1. We
use Theorem 3. Since f(S") = |S’|, we obtain by (7) that

n(s’,0) = f(S") —q(5,0) < |9 —w(@—-95)+1< —1.

Therefore G has no parity (g, f)-factor, which implies G' has no H-factor.

We next prove the statement (ii). Let H : V/(G) — {{1},{0,2}} be any
set-valued function such that |H~'(1)] is odd. Let z be any chosen vertex
of G, and define H” as in (3). Then (H*)"!(1) = H (1) U {2’} contains an
even number of vertices. We shall show that G* and g, f satisfy the condition
of Theorem 3, where g and f are defined as in the previous proof of the
statement (i) and H*(z') = {1}, f(2’) = 1 and g(a’) = —M. Let S and T be
two disjoint subsets of V(G*) = V(G) U {2'}. By the same argument given
above, we may assume that T = ). Tt follows that n(0,0) = —q(0,0) =0
since f(V(G?)) = [(H*)7'(1)] = 0 (mod 2) and G® is connected. Hence we
may assume that S # (). If S contains 2, then w(G*—S) = w(G—(S—{z'})),
and so it follows from (6) that

n(G*8,0) = f(5) —q(G"; 5,0) 2 |S] —w(G — (S —{2})) = L.

Hence we may assume that S does not contain z’. If S does not contain x,
then w(G* — S) = w(G — 9), and so

n(G%5,0) = f(5) = q(G* 5,0) > |S] —w(G = 5) = 0.
If S contains z, then w(G* — S) = w(G — S) + 1. Thus
n(G*; S,0) = f(S) — q(G*; S,0) > |S| —w(G—-S)—1>—1. (8)



On the other hand, since

Y. f)=1HE)TDI=0 (mod 2),

veV(G®)

it follows from Lemma 4 and (8) that n(G*; S,0) > 0. Consequently G* has
an H*-factor, and therefore G is H-critical.

Next we prove the necessity of (ii). Suppose that there exists a subset

0 # S C V(G) such that
w(G—=95)>15+1. (9)

Let C1,Cs,...,C, be the odd components of G — S’, and Dy, D,,..., Dy
be the even components of G — S, where |V(C;)| is odd and |[V(D;)| is
even. If b > 1, then take a vertex w; € D; for every 1 < ¢ < b, and let
W C {w; : 1 <i < b} such that |W| € {b—1,b} and |V(G)| — |W] is odd. If
b =0, then let W C V(C4) such that [W| € {0,1} and |V(G)| — |[W] is odd.
Moreover, choose one vertex x from S’, and let G* = G + xa’.

We define H* : V(G*) — {{1},{0,2}} as

e ] {0,2} ifveV,
A (v) = { {1}  otherwise.

Then (H*)~Y(1) = (V(G) — W)U {z'} and so |(H*)"'(1)] is even. Let M be
a sufficiently large odd integer, and define f,g: V(G*) — Z as

f(v):{2 ifvew

1 otherwise,

and

—M—-1 ifoeW
g(v) =

—M otherwise.
Then it is easy to see that G* has an H*-factor if and only if G* has a parity

(g, f)-factor. We use Theorem 3. Since f(S') = |S'| and ¢(G*;S’,0) >
w(G@—=95") -1+ [{2'}| =w(G —S5"), we obtain by (9) that

n(G"5,0) = f(5') — (G 5,0) < |5 —w(G = 5) < —1.

Therefore G* has no parity (g, f)-factor, which implies G is not H-critical.
Consequently, the proof of Theorem 5 is complete. O

Remark: Tutte’s 1-Factor Theorem builds a relation between 1-factors and
odd components. For an even component C, by picking a vertex v € V(C)
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and assigning {0, 2} to v, even component C' becomes an H-odd component.
Theorem 5 builds a relation between factors and 1-toughness. Consider Pe-
tersen Graph P, which is 1-tough. Let xq, x5 be two adjacent vertices of P.
Note that P—z—y is a cycle of length eight Cs. We denote Cy = vyvs ..., vgvy.

Define 0.2 if / \
_ 0,2} if v € {1, v1, 024,
H(v) = { {1}  otherwise.

Then {2 x1x9, v3v1v03, V405, Vev7 } 18 a H™ -factor of P,

3 {(1,f)-odd, even}-factors

In this section, we generalize Theorem 5 by using an odd integer valued
function f. Let G be a graph, let f: V(G) — {1,3,5,...} be a function, and
let

2N =max{f(z):x € V(G)} +1

be an even integer. Define a set-valued function Hy on V(G) by
He(v)={1,3,...,f(v)} or {0,2,...,2N} foreachv e V(G). (10)

(@)

Thus for a given function f, there are 2!V(%) set-valued functions H ¢. For a

set-valued function H; on V(G), define

Hf_l(f) ={veV(G): Hi(v)={1,3,..., f(v)} }.

A spanning subgraph F' of G is called an H-factorif degp(v) € Hy(v) for
all v € V(G). This H-factor is also called an {(1,f)-odd,even}-factor. For a
vertex x of G, we define a graph G* = G + z2’. Moreover, for a function H;
on V(G), define the function H§ on V(G*) as follows.

1 (v) = { v =a’ (11)

Hg(v) otherwise.

A graph is said to be Hy-critical or {(1,f)-odd,even}-critical if G* has an
Hj-factor for every vertex z of G.
In this section, we prove the following theorem.

Theorem 6 Let G be a connected graph, and let f : V(G) — {1,3,5,...} be
a function. Then the following two statements hold.

(i) G has an Hg-factor for every function Hy with ]ijl(f)| even if and only
if

w(G@—=9)< f(S)+1 forall ScCV(G). (12)

9



(ii) G is Hy-critical for every function H; with |H]71(f)] odd if and only if

w(G—S) < f(S) forall B+£ScCV(G). (13)

Proof. Since this theorem can be proved in a similar way as Theorem 5, we
omit some details of the proof. We first prove the sufficiency for each of (i)
and (ii). Assume that G satisfies (12). Let Hy be any set-valued function
defined by (10) such that \Hf_l(f)] is even. Let M be a sufficiently large odd
integer. Define f1,¢9; : V(G) — Z as

f(v) if He(v) ={1,3,..., f(v)},
hv) = { 2N othej;wise,

and

- —M lfH(U):{]->3aaf(v)}7
g1(v) = { —-M—-1 othe];vvise.

It is easy to see that G has an Hy-factor if and only if G has a parity
(g1, f1)-factor. We use Theorem 3. Let S and T be two disjoint subsets of
V(G). If T # 0, then —gy(T) is sufficiently large, and so n(S,7) > 0. Thus
we may assume that T = ). It follows that n(,0) = —q(@,0) = 0 since
|Hf_1(f)| is even and G is connected. Hence we may assume that S # (). By
f1(S) > f(S), q(S,0) < w(G — S) and by (12), we have

77(3’ ®) = fl(S) _Q(S>®> Z f(S) _W(G_ S) Z —1.

Since f1(V(G)) = |Hf_1(f)| =0 (mod 2), the above inequality implies (S, ) >
0 by Lemma 4. Therefore G has the desired H s-factor.

We next assume that G satisfies (13). In this case, it is also assumed that
|H;(f)] is odd. Let 2 be any chosen vertex of G. We shall show that G* and
f1, g1 satisfy the conditions of Theorem 3, where f;(2’) = 1 and ¢, (2') = — M.
Let S and T be two disjoint subsets of V(G*) = V(G) U {2'}. By the same
argument given above, we may assume T = (). Tt follows that n(G*;(,0) =
—q(G*;0,0) = 0 since {v € V(G*) : fi(v) =1 (mod 2)} = {2’} U Hf_l(f)
contains an even number of vertices and G* is connected. Hence we may
assume that S # (). If S contains 2/, then w(G* — S) < w(G — (S —2')), and
so n(G*;S,0) > f(S) —w(G = (S —2')) > 1. Thus we may assume that S
does not contain z’. If S does not contain z, then w(G* — 5) = w(G — 9),
and so n(G*; S,0) > f(S)—w(G—S) > 0. If S contains z, then w(G*—S5) =
w(G — 8) + 1, and thus n(G*;S,0) > f(S) —w(G —S) —1 > —1, which
implies 7(G"; S, %) > 0 by Lemma 4 and f,(V(G")) = [H;'(f)U{z'} =0
(mod 2). Therefore G* has a H§-factor. Consequently G'is H -critical.

10



We now prove the necessity for each of (i) and (ii). First consider (i).
Assume that there exists a subset () # S’ C V(G) such that

W(G — 8" > f(S') +2. (14)

Let C1,Cy, ..., C, be the odd components of G — 5’, and let Dy, D5, ..., D,
be the even components of G — S’. If b > 1, then take a vertex w; € D; for
every 1 <7 <b, and let W C {w; : 1 <¢ < b} such that [W| € {b—1,b} and
\V(G)| —|W| is even. If b = 0, then take W C V(C}) such that [W]| € {0,1}
and |V(G)| — |W] is even.

We define Hy : V(G) — {{1,3,..., f(v)},{0,2,...,2N}} as

[ {0,2,....2N} ifveW,
Hy(v) = { {1,3,..., f(v)} otherwise.

Then |Hf_1(f)| is even by Hf_l(f) = V(G) — W and by the choice of W. Let
M be a sufficiently large odd integer, and define fs, g5 : V(G) — Z as

2N ifveW
f2(v) :{ f(v) otherwise,

and

—M—-1 ifveWw
ga(v) =

-M otherwise.

Then G has an Hy-factor if and only if G has a parity (g2, f2)-factor. We
use Theorem 3. Since fo(S") = f(5') and ¢(5,0) > w(G — S’) — 1, it follows
from (14) that

77(5/7@) = f2(S/) - Q(Slaw) S f(S,) - W(G - S,) + 1 S —1.

Therefore G has no parity (g2, f2)-factor, and thus G has no Hs-factor.

Next consider (ii). Suppose that there exists a subset ) # 5" C V(G)
such that

W(G — 8" > f(S') +1. (15)

Let C1,Cs, ..., C, be the odd components of G — S, and Dy, D,, ..., D, be
the even components of G — S’. If b > 1, then take a vertex w; € D; for
every 1 <i <b,and let W C {w; : 1 <i < b} such that [W| € {b—1,b} and
V(G)| — [W]is odd. If b = 0, then let W C V(C4) such that |[W] € {0,1}
and |V(G)| — |W| is odd. Define a set-valued function H; on V(G) as

[ {0,2,....2N} iftveW,
Hyv) = { {1,3,..., f(v)} otherwise.

11



Then |(Hy) *(f)] = |V(G) — W] is odd.

Choose one vertex x from S’, and let G* = G + z2’. Then define a
function H§ on V(G*) as in (11). Let M be a sufficiently large odd integer,
and define f5, g5 : V(G*) — Z as

2N ifveW,
fo(v) =< f(v) ifveV(G)-W,
1 ifv=a.

and
-M—-1 ifoeW
92(v) = { -M if otherwise.

Then it is easy to see that G* has an Hy-factor if and only if G* has a parity
(g2, f2)-factor. We use Theorem 3. Since all but at most one component of
G — 5" are gy-odd components, we have ¢(G;S’,0) > w(G — S") — 1. Note
that 2’ is an isolated vertices of G* — 5" and G — S' = G* — S’ — x’. Thus we
have ¢(G*; S",0) > w(G —5") =1+ |{2'}| = w(G —5’). Since fo(S") = f(5'),
we obtain by (15) that

n(G* S, 0) = f(5') —q(G*; S",0) < f(5') —w(G - 5") < -1

Therefore G* has no parity (g2, f2)-factor, which implies G is not H j-critical.
Consequently, the proof of Theorem 6 is complete. O
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