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Abstract

A subgraph H of an edge-colored graph G is called a properly col-
ored subgraph if no two adjacent edges of H have the same color, and
is called a rainbow subgraph if no two edges of H have the same color.
We prove the following two theorems and show that the conditions
on the minimum color degree are sharp. Let G be an edge-colored
graph with minimum color degree δc(G). If δc(G) ≥ |G|/2, then G
has a properly colored spanning tree. Moreover, if δc(G) ≥ |G|/2 and
the set of edges colored with any fixed color forms a subgraph of or-
der at most (|G|/2) + 1, then G has a rainbow spanning tree. We
also give a new proof of a necessary and sufficient condition for the
existence of properly colored spanning trees in edge-colored compete
graphs which appeared in (Abouelaoualim et al, Proceedings of CTW
09, Paris, 115-119). Also we generalize it to edge-colored balanced
compete bipartite graphs.
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1 Introduction

In this paper we consider finite simple graphs, which have neither loops nor
multiple edges. For a graph G = (V (G), E(G)), let V (G), E(G) and |G|
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denote the vertex set, the edge set and the order of G, respectively. Thus
|G| = |V (G)|. For a vertex v, the degree of v in G is denoted by dG(v), and
the minimum degree of G is denoted by δ(G).

If every edge of a graph G is colored, then G is called an edge-colored
graph or briefly a colored graph. Let G be a colored graph. For a vertex
v of G, the color degree of v, denoted by dcG(v), is the number of distinct
colors appeared in the edges incident with v, and the minimum color degree
of G, denoted by δc(G), is the minimum value among the color degrees of all
vertices of G.

Let H be a subgraph of a colored graph G. Then H is called a properly
colored subgraph if no two adjacent edges of H have the same color. On
the other hand, if no two edges of H have the same color, then H is called
a rainbow subgraph or a heterochromatic subgraph. The complete graph of
order n is denoted by Kn, and the complete bipartite graph with partite
sets of order m and n is denoted by Km,n, and K1,n is called a star, where
m,n ≥ 1 are integers. For a star K1,n with n ≥ 2, the vertex of degree n is
called its center, and the center of K1,1 is any chosen vertex.

The classical Dirac’s theorem in [6] states that every graph G with order
at least 3 and minimum degree δ(G) ≥ |G|/2 contains a Hamiltonian cycle.
A natural question is the following: Does an edge-colored graph G with
δc(G) ≥ |G|/2 have a properly colored Hamiltonian cycle? However, Fujita
and Magnant [9] showed that there exists a coloring ofK2m with δc(K2m) = m
which has no properly colored Hamiltonian cycle. Furthermore, in [12], Lo
showed that the lower bound cannot be better than (2/3)|G|. Besides, he
proved the following theorem.

Theorem 1 (Lo [11]). For any ε > 0, there exists an integer n0 such that
every edge-colored graph G with δc(G) ≥ (2

3
+ ε)|G| and |G| ≥ n0 contains a

properly colored cycle of length l for all 3 ≤ l ≤ |G|.

Therefore, we tend to consider a properly colored spanning tree in an
edge-colored graph. However the following is known, and so it is difficult to
find a properly colored spanning tree.

Theorem 2 ([1]). Finding a properly colored spanning tree in an edge-colored
graph is NP-complete.

In this paper, we show that an edge-colored graph G with δc(G) ≥ |G|/2
has a properly colored spanning tree. In fact, we prove the following three
theorems, and show that the condition on the minimum color degree is sharp,
which is shown in Section 3.
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Theorem 3. Let G be an edge-colored connected graph. If

δc(G) ≥ |G|
2

,

then G has a properly colored spanning tree.

Notice that the above theorem follows immediately from the following
Theorem 5, and it is shown in the beginning of Section 3.

Theorem 4. Let G be an edge-colored connected graph having the property
that for every color c, the set of edges colored with c forms a subgraph of G
with order at most |G|

2
+ 1. If

δc(G) ≥ |G|
2

,

then G has a rainbow spanning tree.

Theorem 5. Let G be an edge-colored connected graph having the property
that for every color c, the set of edges colored with c forms a star. If

δc(G) ≥ |G|
2

,

then G has a rainbow spanning tree.

We first explain that Theorem 5 is an easy consequence of Theorem 4.
Assume that G satisfies the conditions of Theorem 5. Let S be a star with
center u induced by the set of edges colored with any fixed color. Then it
follows that

dS(u) ≤ dG(u)− (dcG(u)− 1) ≤ (|G| − 1)−
( |G|

2
− 1

)
=

|G|
2

,

and so dS(u) ≤ |G|/2. Thus |S| ≤ (|G|/2) + 1. Hence G satisfies the
conditions of Theorem 4, and thus Theorem 5 follows from Theorem 4.

We now mention a few known results on rainbow spanning trees. Some
other results related to our theorems can be found in [10]. The maximum
color degree of an edge-colored graph G is denoted by ∆c(G), which is the
maximum value among the color degrees of all vertices of G.

Theorem 6 (Brualdi and Hollingsworht [4]). The edge-colored complete
graph K2n (n ≥ 3) has two edge disjoint rainbow spanning trees if the set
of edges colored with any color forms a perfect matching of K2n.
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Theorem 7 (Akbari and Alipour [2]). Assume that the edges of the complete
graph Kn are colored with t colors. If t ≥ n − 1 and ∆c(Kn) ≤ (n + 3)/2,
then Kn has a rainbow spanning tree.

Theorem 8 (Suzuki [14]). The edge-colored complete graph Kn has a rainbow
spanning tree if the number of edges colored with any color is at most n

2
.

There are some other results on rainbow spanning trees, and most of them
give sufficient conditions for a colored complete graph or a colored complete
bipartite graph to have a rainbow spanning tree (see [10]). On the other
hand, Theorem 4 gives a sufficient condition for a colored general graph to
have a rainbow spanning tree. The following theorem gives a criterion for a
colored graph to have a rainbow spanning tree, and we use Theorem 9 in the
proof of Theorem 4.

Theorem 9 (Akbari and Alipour [2], and Suzuki [14]). An edge-colored con-
nected graph G has a rainbow spanning tree if and only if for any r colors
(1 ≤ r ≤ |G| − 2), the removal of all the edges colored with these r colors
from G results in a graph having at most r + 1 components.

2 Proof of Theorem 4

In this section, we prove Theorem 4.

Proof of Theorem 4. It is easy to see that the theorem holds if 2 ≤ |G| ≤ 3.
Hence we may assume that |G| ≥ 4.

Assume thatG has no rainbow spanning tree. By Theorem 9, there exist r
colors such that 1 ≤ r ≤ |G|−2 and the removal of all the edges colored with
these r colors from G results in a graph that has at least r + 2 components.

Let n = |G|, and let X1, X2, ..., Xr be the subgraphs of G induced by
the set of edges colored with each of these r colors, respectively. We call
Xi a monochromatic subgraph. Then every Xi has order at most (n/2) + 1
by the assumption. Let W1,W2, ...,Wℓ, ℓ ≥ r + 2, be the components of
G−

∪r
i=1E(Xi). Let H be the spanning subgraph of G defined as

H = G−
r∪

i=1

E(Xi) = (V (G),
ℓ∪

j=1

E(Wj)).

Claim 2.1. r ≥ ⌈n/2⌉.
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Proof. Without loss of generality, we may assume that W1 is a smallest com-
ponent of H, namely, |W1| = min{|Wi| : 1 ≤ i ≤ ℓ}. It is obvious that
|W1| ≤ n/(r + 2). Let v be a vertex of W1. Then dcG(v) ≥ δc(G) ≥ n/2, and
so

n

2
≤ dcG(v) ≤ |W1| − 1 + r ≤ n

r + 2
− 1 + r. (1)

Hence

n ≤ 2(r + 2)(r − 1)

r
= 2(r + 1)− 4

r
.

If n is even, then this inequality implies n ≤ 2r, and hence ⌈n/2⌉ ≤ r. If n
is odd, then (1) implies (n + 1)/2 ≤ dcG(v) ≤ n/(r + 2) − 1 + r, and so n ≤
2r+1− 6/r. This implies n ≤ 2r− 1. Therefore ⌈n/2⌉ = (n+1)/2 ≤ r.

Claim 2.2. Assume n ≥ 4. Then for every r, ⌈n/2⌉ ≤ r ≤ n− 2, it follows
that

n2

4
− r

2

(⌊n
2

⌋
+ 1

)
≥

(
n− r − 1

2

)
+ 1. (2)

Proof. Consider a function f(r) with ⌈n/2⌉ ≤ r ≤ n− 2 defined by

f(r) =
n2

4
− r

2

(⌊n
2

⌋
+ 1

)
−

(
n− r − 1

2

)
− 1

= −r2

2
+
(
n− 2− 1

2
·
⌊n
2

⌋)
r − n2

4
+

3n

2
− 2.

In order to show that f(r) ≥ 0 for all ⌈n/2⌉ ≤ r ≤ n− 2, it suffices to show
that f(⌈n/2⌉) ≥ 0 and f(n− 2) ≥ 0. If n is even, then we have

f(n/2) = −n2

8
+
(3n− 8

4

)n
2
− n2

4
+

3n

2
− 2

=
n

2
− 2 ≥ 0,

and

f(n− 2) = −(n− 2)2

2
+
(3n− 8

4

)
(n− 2)− n2

4
+

3n

2
− 2

= 0.

5



If n is odd, then ⌈n/2⌉ = (n+ 1)/2 and ⌊n/2⌋ = (n− 1)/2, and we have

f((n+ 1)/2) = −(n+ 1)2

8
+
(3n− 7

4

)(n+ 1

2

)
− n2

4
+

3n

2
− 2

=
3n

4
− 3 ≥ 0,

and

f(n− 2) = −(n− 2)2

2
+
(3n− 7

4

)
(n− 2)− n2

4
+

3n

2
− 2

=
n

4
− 1

2
≥ 0.

Therefore the claim is proved.

It is easy to see that a graph of order n with ℓ components has a maximum
number of edges when it consists of one complete graph of order n − ℓ + 1
and ℓ− 1 isolated vertices. Thus it follows from ℓ ≥ r + 2 that

|E(H)| ≤
(
n− ℓ+ 1

2

)
≤

(
n− r − 1

2

)
. (3)

On the other hand, the removal of a monochromatic subgraph Xi from
G decreases at most ⌊n/2⌋ + 1 of

∑
v∈V (G) d

c
G(v). Hence it follows from

δc(G) ≥ n/2 that∑
v∈V (G)

dcH(v) ≥
∑

v∈V (G)

dcG(v)− r(
⌊n
2

⌋
+ 1) ≥ n2

2
− r(

⌊n
2

⌋
+ 1).

By Claim 2.2, we obtain

|E(H)| ≥ 1

2

∑
v∈V (G)

dcH(v) ≥
(
n− r − 1

2

)
+ 1.

The above inequality contradicts (3). Consequently the proof is complete.

3 Proof of Theorem 3

In this section, we prove Theorem 3, and show that the condition on δc(G)
of Theorems 3 and 4 is sharp. In an edge-colored G, a monochromatic com-
ponent is a maximal connected monochromatic subgraph of G, and for every
edge e of G, let color(e) denote the color of e.
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Proof of Theorem 3. First, we take a spanning subgraph G1 of G with min-
imum number of edges that satisfies δc(G1) = δc(G). Then the deletion of
any edge of G1 reduces δc(G1). Thus every monochromatic component of
G1 is a star since otherwise there exists a monochromatic path P = v1v2v3v4
of length 3, but the deletion of the edge v2v3 does not reduce δc(G1), a
contradiction.

We construct a new edge-colored graph G∗ from G1 as follows: For any
monochromatic component S of G1, we recolor the edges of S by a new
color cS depending only on S, namely, all monochromatic components of G1

are colored with distinct colors and all edges of the same monochromatic
component of G1 are colored with the same new color.

It is obvious that for each color c, the set of edges of G∗ colored with c
forms a star and δc(G∗) = δc(G1) = δc(G) ≥ |G|/2 = |G∗|/2. By Theorem 4,
G∗ contains a rainbow spanning tree T ∗. By recoloring all the edges of T ∗

with their original colors in G1, we obtain a properly colored spanning tree
of G1, which is the desired spanning tree of G. Consequently, Theorem 3 is
proved.

We next show that the lower bound δc(G) ≥ |G|/2 is tight. We first
consider the case where |G| = 2m+1. Let Km be a rainbow complete graph
with V (Km) = {u1, u2, . . . , um}, in which all the edges have distinct colors.
Let v1, v2, . . . , vm+1 be m + 1 new vertices, and let c1, c2, . . . , cm be new m
colors not appearing inKm. We construct an edge-colored graph G1 fromKm

and {v1, v2, . . . , vm+1} by adding a new edge uivj colored with ci for all 1 ≤
i ≤ m and 1 ≤ j ≤ m+ 1. Then G1 satisfies δc(G1) = m ≥ (|G1| − 1)/2 and
every monochromatic component of G1 is a star. Note that in G1, a properly
colored spanning graph is also a rainbow spanning tree and vice versa. If we
delete the m monochromatic stars induced by colors c1, c2, . . . , cm, then we
obtain a graph with m + 2 components. Hence by Theorem 9, G1 does not
have a rainbow spanning tree.

Next consider the case where |G| = 2m + 2. We construct a graph G2

from Km and m + 2 new vertices v1, v2, . . . , vm+2 in the same way as given
above. Hence |G2| = 2(m + 1), δc(G2) = m ≥ |G2|/2 − 1, and G2 has no
rainbow spanning tree. Therefore the lower bound on δc(G) is tight.

In [5], Čada et al. proposed the following conjecture:

Conjecture 10. Let G be an edge-colored graph of order n, and let k be a
positive integer. If δc(G) ≥ n+k

2
, then G contains a rainbow cycle of length

at least k.

As a corollary of Theorem 3, we prove a properly colored version of this
conjecture.
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Corollary 11. Let k and n be two positive integers such that 1 ≤ k ≤ n− 1,
and let G be an edge-colored graph of order n. If δc(G) ≥ n+k+3

2
, then every

properly colored path with length at most k is contained in a properly colored
cycle with length at least k+1. Especially, every edge of G is contained in a
properly colored cycle with length at least k + 1.

Proof. First, by δc(G) ≥ k, every properly colored path with length less
than k can be extended to a properly colored path with length k. Take such
a path P = uw1w2...wk−1v of length k and with endpoints u and v. Let
W = {w1, ..., wk−1} and H = G−W . Let H1 be the subgraph of H obtained
from H by deleting the edges adjacent to u with color color(uw1) and the
edges adjacent to v with color color(wk−1v). Then, for every x ∈ V (H1), we
have

dcH1
(x) ≥ δc(G)− |W | ≥ n+ k + 3

2
− (k + 1) =

n− k + 1

2
.

Since |H1| = n − k + 1, it follows that δc(H1) ≥ |H1|/2. By Theorem 3, H1

contains a properly colored spanning tree T1. Hence, T1 contains a path P1 =
ux1x2...xav connecting u and v. Since color(ux1) ̸= color(uw1), color(xav) ̸=
color(wk−1v) and xi /∈ W for every 1 ≤ i ≤ a, P1 ∪ P is the desired properly
colored cycle with the length at least k + 1.

4 Other Results

A 1-tree-cycle system of G is a set of vertex disjoint subgraphs consisting of
one tree T and some cycles C1, . . . , Cd. If this 1-tree-cycle system satisfies
V (T )∪V (C1)∪ · · · ∪V (Ck) = V (G), then it is called a spanning 1-tree-cycle
system. Moreover, if the tree T and every cycle Ci are properly colored, then
it is called a properly colored 1-tree-cycle system. The following theorem has
already appeared in [1], but they didn’t give a complete proof in that paper.
We now give a new short proof here.

Theorem 12 ([1]). An edge-colored complete graph Kn contains a properly
colored spanning tree if and only if it has a properly colored spanning 1-tree-
cycle system.

Proof. Since a properly colored spanning tree is itself a properly colored span-
ning 1-tree-cycle, it suffices to prove the sufficiency. Suppose thatKn contains
a properly colored spanning 1-tree-cycle system {T,C1, . . . , Ck}, where T is
a tree and every Ci is a cycle. We prove the theorem by induction on k.
Suppose that the theorem holds for k = 1. Then by applying the theorem
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with k = 1 to the complete subgraph induced by V (T )∪ V (C1), we obtain a
properly colored spanning tree T1 in it. This implies that there is a properly
colored spanning 1-tree-cycle system T1 ∪C2 ∪ · · · ∪Ck in Kn. Hence, by the
induction hypotheses, there exists a properly colored spanning tree Tk in Kn.
Therefore it suffice to prove that the theorem holds for k = 1.

Now we assume that Kn contains vertex disjoint properly colored a tree T
and a cycle C1 such that V (T )∪ V (C1) = V (G). We claim that Kn contains
a properly colored spanning tree. Suppose to the contrary that G has no
properly colored spanning tree. Let C1 = v1v2...vt be the properly colored
cycle of order t, where vi denotes a vertex, and for convenience, v0 and vt+1

denote vt and v1, respectively. For every edge e of Kn, let color(e) denote the
color of e. For any edge e ∈ E(T ), k(e) denotes the number of edges which
join an end-vertex of e to C1 and has the same color as e.

Claim 4.1. For every edge xvi of Kn joining x ∈ V (T ) to vi ∈ V (C1), there
exists a unique edge xz in T such that color(xz) = color(xvi).

Proof. Suppose that there exists an edge xvi joining T to C1 such that no
edge of T incident with x has the color color(xvi). Then T + xvi + (C1 −
vivi+1) or T + xvi + (C1 − vivi−1) is a properly colored spanning tree of Kn,
a contradiction. The uniqueness is obvious since T is properly colored.

Claim 4.2. Let e = xy be an edge of T . If an edge xvi joining T to C1 has
the same color as e, and if color(vivi−1) ̸= color(e), color(vivi+1) ̸= color(e),
then k(e) ≤ t.

Proof. In fact, if color(xvj) ̸= color(e) for every 1 ≤ j ≤ t, then it is obvious
that k(e) ≤ t. Assume that there is an edge xva, 1 ≤ a ≤ t, that has
the same color as e. Then at least one of edges of vava−1 and vava+1} has
a distinct color from e, and let vavb the other edge of vava−1 and vava+1.
Then the T − e + xva + (C − vavb) is a properly colored spanning tree, a
contradiction.

Claim 4.3. For every edge e = xy of T , we have k(e) ≤ t.

Proof. Let e = xy be an edge of T . Assume that k(e) > t. By the same
argument given in the proof of Claim 4.2, there exists a vertex va in C1 such
that xva has the same color as e. By Claim 4.2 and by symmetry, we may
assume that vava+1 has the same color as e. If yva+1 has the same color as e,
then T −e−vava+1+xva+yva+1 is a properly colored spanning tree of Kn, a
contradiction. Hence color(yva+1) ̸= color(e). Then T+yva+1+(C−xa+1va+2

is a properly colored spanning tree of G, a contradiction.
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By Claim 4.1, for every edge e joining T to C1, there exists a unique edge
f(e) in T that has the same color as e and is adjacent to e. Since the total
number of edges between T and C1 is t(n− t) and the number of edges in T
is n− t− 1, there exists an edge e1 such that at least t(n− t)/(n− t− 1) > t
edges are mapped to e1 by f . On the other hand, by Claim 4.3, k(e1) ≤ t,
which is a contradiction. That completes the proof of Theorem 12.

The method that we used to prove Theorem 12 can be easily generalized
to edge-colored complete balanced bipartite graphs.

Theorem 13. An edge-colored complete balanced bipartite graph Kn,n con-
tains a properly colored spanning tree if and only if it contains a properly
colored spanning 1-tree-cycle system.

Proof. Suppose that Kn,n contains a properly colored spanning 1-tree-cycle
system {T,C1, C2, . . . , Ck} where T is a tree and every Ci is a cycle. As
mentioned in the proof of Theorem 12, we assume that k = 1 and thus Kn,n

contains vertex disjoint a tree T and a cycle C1 with V (T )∪V (C1) = V (Kn,n).
We claim that Kn,n contains a properly colored spanning tree. Suppose to
the contrary that Kn,n has no properly colored spanning tree. Let C1 =
v1v2 · · · v2t−1v2t, where the subscript are all elements of Z/2t. For any edge
For every edge e of T , k(e) denotes the number of edges between T and C1

which are adjacent to e and colored with color(e).

Claim 4.4. For every edge xvi joining x ∈ V (T ) to vi ∈ V (C1), there exists
a unique edge xz in T such that color(xz) = color(xvi).

Proof. Suppose that there exists an edge xvi joining T to C1 such that no edge
of T incident with x has the color color(xvi). Then T + xvi + (C1 − vivi+1)
or T + xvi + (C1 − vivi−1) is a properly colored spanning tree of Kn,n, a
contradiction. The uniqueness is obvious since T is properly colored.

Claim 4.5. Let e = xy be an edge of T . If an edge xvi joining T to C1 has
the same color as e, and if color(vivi−1) ̸= color(e), color(vivi+1) ̸= color(e),
then k(e) ≤ t.

Proof. In fact, if color(xvj) ̸= color(e) for every 1 ≤ j ≤ t, then it is obvious
that k(e) ≤ t. Assume that there is an edge xva, 1 ≤ a ≤ t, that has
the same color as e. Then at least one of edges of vava−1 and vava+1} has
a distinct color from e, and let vavb the other edge of vava−1 and vava+1.
Then the T − e + xva + (C − vavb) is a properly colored spanning tree, a
contradiction.
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Claim 4.6. For every edge e = xy of T , we have k(e) ≤ t.

Proof. Let e = xy be an edge of T . Assume that k(e) > t. By the same
argument given in the proof of Claim 4.2, there exists a vertex va in C1 such
that xva has the same color as e. By Claim 4.2 and by symmetry, we may
assume that vava+1 has the same color as e. If yva+1 has the same color as e,
then T −e−vava+1+xva+yva+1 is a properly colored spanning tree of Kn, a
contradiction. Hence color(yva+1) ̸= color(e). Then T+yva+1+(C−xa+1va+2

is a properly colored spanning tree of G, a contradiction.

Proof. We first claim that for any vjvj+1 ∈ E(C1) with color(vjvj+1) =
color(e0) and 1 ≤ j ≤ 2t, the number of edges between vjvj+1 and e0 colored
by color(e0) is at most 1, otherwise since Kn,n is bipartite, without loss of
generality, suppose color(u0vj) = color(vjvj+1) = color(u1vj+1) = color(e0),
then (C1−{vjvj+1})∪ (T −{e0})∪{u0vj, u1vj+1} is a properly colored span-
ning tree, a contradiction. Now by Claim 4.5, we get that for every edge
uivj(i = 0, 1, j = 1, 2, ..., t), there exist an edge vjvj+1(or vjvj−1) such that
color(vjvj+1) = color(uivj)(or color(vjvj−1) = color(uivj))and hence we have
k(e0) ≤ t.

Now by Claim 4.5, every edge e between T and C1 has a unique edge
f(e) ∈ E(T ) such that color(f(e)) = color(e) and f(e) is adjacent to e.
Since the total number of edges between T and C1 is 2t(n − t) and the
number of edges in T is 2n − 2t − 1, there exists an edge e1 such that at
least (2t(n− t)/(2n− 2t− 1) > t edges are mapped to e1 by f . However, by
Claim 4.6, k(e1) ≤ t, which is a contradiction. That completes the proof of
Theorem 13.
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