(1, f)-factors of graphs with odd property
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Abstract

Let G be a graph and f : V(G) — {1,2,3,4,...} be a function.
We denote by odd(G) the number of odd components of G. We prove
that if odd(G — X) < ) cx f(z) for all X C V(G), then G has a
(1, f)-factor F such that, for every vertex v of G, if f(v) is even,
then degp(v) € {1,3,...,f(v) — 1, f(v)}, and otherwise degp(v) €
{1,3,..., f(v)}. This theorem is a generalization of both the (1, f)-

odd factor theorem and a recent result on {1,3,...,2n—1,2n}-factors
by Lu and Wang. We actually prove a result stronger than the above
theorem.
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1 Introduction

We consider finite graphs which has neither loops nor multiple edges. For a
graph G, let V(G) and E(G) denote the set of vertices and the set of edges
of G, respectively. We write |G| for the order of G (i.e., |G| = |V(G)|). For
a vertex v of G, we denote by deg.(v) the degree of v in G . For a subset
S C V(G), we write G — S for the subgraph of G induced by V(G) — S. A
component of a graph is called an odd component if it is of odd order. Let
odd(G) and Odd(G) denote the number of odd components and the set of
odd components of G, respectively. Thus odd(G) = |Odd(G)|.
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For an odd integer-valued function f : V(G) — {1,3,5,...}, a span-
ning subgraph F of G is called a (1, f)-odd factor if degp(x) € {1,3,5,
.., f(z)} for all x € V(G), while for an integer-valued function g : V(G) —
{1,2,3,...}, a spanning subgraph H such that 1 < degy(z) < g(x) for all
z € V(Q) is called a (1, g)-factor. A criterion for a graph to have a (1, f)-odd
factor is given in the following theorem.

Theorem 1 (Cui and Kano [2]) Let G be a graph and f: V(G) — {1, 3,
5,...}. Then G has a (1, f)-odd factor if and only if

odd(G — X) <> f(x) for all X C V(G).

zeX

Recently the following theorem, which settles a long-standing open prob-
lem given in [2], has been obtained by H.L. Lu and David G.L. Wang.

Theorem 2 (Lu and Wang [3]) Let G be a graph and n > 2 be an even
integer. If

odd(G — X) < n|X]| for all X C V(QG)

then G has a factor F such that degp(z) € {1,3,5,...,n — 1,n} for all
z € V(G).

In this paper, we prove a theorem which is a generalization of both The-
orems 1 and 2. Moreover, the proof in [3] uses a deep structure theorem
for H-factors obtained by Lovasz, but our proof uses a standard proof tech-
nique in factor theory, called a f-method, and a class of special graphs and
functions.

For an integer n > 1, we define a class By, ;1 of pairs (G, f) of a connected
graph G of order 2n — 1 and a function f: V(G) — {1,2,3,...} inductively
as follows. Set By = (). Let n > 2, and assume that By, Bs, ..., Bs,_3 have
been defined. For a pair (H, f) of a graph H with |H| < 2n—2 and a function
f:V(H)—{1,2,3,...}, let

Oddy(H) = {C € 0dd(H) : (C,f) ¢ ) B}

1<k<n—1



Set

Bon_1 = {(G, f) : G is a connected graph of order 2n — 1,
FiV(G) = {1,2,3,...},
0dd(G— X)| <Y f(x) forall §#X CV(G),

zeX
and there exists ) # S C V(G) such that

0ddy(G = S)| =) fa)}.

z€eS

B=|]J B

n>1

Now let,

Some elements of B are shown in Figure 1, where numbers in the figure
indicate values of f. Note that for each example of f : V(G;) — {1,2,...},
we have |Odd;(Gy —r) = 2 = f(r). Similarly, for each example of f :
V(Gy) — {1,2,...}, we have |Odd;(G —t)| = f(t). Pairs (G, f) € B can
be regarded as benign pairs because we do not count them in the inequality
stated in Theorem 3.
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Figure 1: Some elements (G, f) € B; and (G, f) € Bs.

For a pair (G, f) of a graph G and a function f : V(G) — {1,2,3,...},
let

0dd;(G) = {C € 0dd(G) : (C,f) & B}, and
odd;(G) = |0dd(G)|.

Note that this definition is consistent with the notation Odd;(H) introduced
in the preceding paragraph in the course of the definition of By, ;.



Theorem 3 Let G be a connected graph of order at least two and f : V(G) —
{1,2,3,...}. Suppose that either (G,f) € B, or G is of even order and
satisfies

odd;(G—X) <Y f(x)  forall §# X CV(G). (1)

reX

Then G has a (1, f)-factor F such that, for every vertex v of G, if f(v)
is even, then degp(v) € {1,3,..., f(v) — 1, f(v)}, and otherwise degy(v) €

{1,3,...,f(v)}.

The following theorem is an immediate consequence of the above theorem
since oddf(G — X) < odd(G — X) for all ) # X C V(G) and odd(G) = 0
implies that every component of GG is of even order. Moreover, the following
theorem is a generalization of both Theorems 1 and 2.

Theorem 4 Let G be a graph and f : V(G) — {1,2,3,...}. If

odd(G — X) <) f(x) for all X C V(G),

zeX

then G has a (1, f)-factor F such that, for every vertex v of G, if f(v) is
even, then degp(v) € {1,3,...,f(v) — 1, f(v)}, and otherwise degp(v) €

{1,3,...,f(v)}.

2 Proof of Theorem 3

For two sets X and Y, X C Y means that X is a proper subset of Y. Let
G be a graph. For two vertices z and y of G, we write xy or yx for an edge
joining z to y. For a vertex v of G, the neighborhood of v is denote by Ng(v),
and for a subset S of V(G), we define Ng(S) = UyesNa(2).

In order to prove Theorem 3, we need the following basic results.

Lemma 5 ([1] Lemma 2.26) Let G be a graph of even order and S C
V(G). Then
odd(G — S)=|S| (mod 2).

Lemma 6 (Generalized Marriage Theorem, [1] Theorem 2.9) Let G
be a bipartite graph with bipartition (X,Y), and let f : X — {1,2,3,...} be
a function. Then G has a spanning subgraph F such that

degp(x) = f(z) forallz e X, and degp(y) =1 forall yeyY

4



if and only if

ING(S)| > fl@)  forall 0#£SCX, and [Y|=)_ f(a).

€S zeX

Note that if such a subgraph F exists, every component of F' is a star.

Lemma 7 If (G, f) € B, then G has at least one vertex u such that f(u) is
even.

Proof. By the definition of B, GG is a connected graph of odd order. We prove
the lemma by induction on |G|. If |G| = 3, then G has a vertex u such that
odd;(G —u) = f(u) > 1. Then oddf(G — u) = 0dd(G — u) =2 = f(u).

Assume that |G| > 5. Suppose, to the contrary, that f(z) is odd for every
vertex x. Let S be a non-empty vertex set of G such that odd;(G — S) =
Y s f(x). Since f(z)isodd forallz € S, > ¢ f(z) = |S| (mod 2). Since
|G| is odd, odd(G' — S) # |S| (mod 2). Thus odd;(G — S) # odd(G — S), and
hence there exists an odd component C of G — S such that (C, f) € B. By
the induction hypothesis, C' has at least one vertex u such that f(u) is even,
which contradicts the assumption that f(z) is odd for every vertex x. Hence
G has a desired vertex u. O

Proof of Theorem 3. We denote the number of components of a graph
H by w(H). For brevity, we refer to a (1, f)-factor satisfying the property
required in Theorem 3 as a (1, f)-factor with odd property.

We prove Theorem 3 by induction on 37, .\ f(2). If G is of even order
and f(x) is odd for all z € V(G), then for each ) # X C V(G), we have
odd(G—X) = odd;(G—X) by the definition of odd;(G—X) and by Lemma 7,
and hence Theorem 3 follows from Theorem 1. By this observation and by
Lemma 7, we may assume that G has a vertex w such that f(w) is even.
Throughout the proof, w always denotes this special vertex.

Let us define the number 3 by

B = min{z flx) —oddf(G—-X) : 0 #X C V(G)}.

reX

Then > 0 by (1) and the definition of B, and

oddf(G—Y) <> f(z)—p forall D#£Y CV(G). (2)

zeY

Choose a vertex set S of G so that



(S1) Sisamaximalset with 5 =5 _¢ f(x) —odd;(G—S), and
(S2) w(G — 9) is as large as possible subject to (S1).

By the maximality of S, for every X C V(G) with |S| < |X]|, we have

B4+1<) fx) — oddy(G - X). (3)

reX

Claim 1. If > 1, then G has a desired (1, f)-factor with odd property.

Proof. Assume § > 1. Then (G, f) ¢ B by (2) and the definition of B, and
so G is of even order. Define f*:V(G) — {1,2,3,...} by

oy fle)=1 ifz=uw;
f(z) _{ f(x) otherwise.

Let 0 # X C V(G). fw ¢ X, then Y f*(x) =D, cx f(x) and oddy- (G —
X) <oddy(G - X)+1;if we X, then 3 _ f*(x) => .y f(¥) — 1 and
odds« (G — X) = odd¢(G — X). In either case,

> (@) —oddp (G — X) > fx) — odd (G — X) — 1.

reX zeX

Hence } _ f*(x) —odds- (G —X) > 3—12> 0 by (2). Since X is arbitrary,
this implies that G has a (1, f*)-factor F* with odd property by the induction
hypothesis. Since f*(w) is odd, we have degp.(w) € {1,3,..., f*(w) =
f(w) — 1}. Therefore, F* is a desired (1, f)-factor with odd property. O

Hereafter we assume that 5 = 0.

Claim 2. If w(G — S) = 1, then G has a desired (1, f)-factor with odd
property.

Proof. Assume that w(G —S) = 1. Then w(G — S) =1 = odd;(G — 5) =
Y wes f(®), and thus S = {s} and odd;(G — s) = f(s) = 1. Then w # s.
Since w(G — s) = oddf(G — s) =1, G — s is of odd order, and hence G is of
even order. Define f*: V(G) — {1,2,3,...} by

oo fle)—1 ifx=w;
) = { f(z) otherwise.

Let ) # X C V( ). If
X) < w(G-X) =125,
> sex [ (@) — oddy (G — X) >
obtain ) f*(x) —oddy- (G —

|X| =1 and w(G — X) = 1, then odd (G —
~ fH(x); if | X| > 2 or w(G — X) > 2, then
by (3) or condition (S2), and we therefore
X) > cx f(@) —odds(G—X)—12>0by
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arguing as in the proof of Claim 1. Thus odd;-(G — X) < > _ f*(x) for
every ) # X C V(G). Hence G has a (1, f*)-factor F* with odd property by
induction. Since f*(w) is odd, it follows that degp.(w) € {1,3,..., f*(w) =
f(w) — 1}. Therefore F* is a desired (1, f)-factor with odd property. O

Hereafter we assume that w(G — S) > 2.
Claim 3. Fuvery even component of G — S has a (1, f)-factor with odd
property.

Proof. Let D be an even component of G — S. Let ) # X C V(D). By (2),
we have

odd;(G — S) + odd;(D — X) = odd;(G — 5 U X)

< D> fl@) =) f@)+ Y fla).

reESUX TES zeX

Hence odd;(D — X) < > . f(z). Since X is arbitrary, this implies that D
has a (1, f)-factor with odd property by the induction hypothesis.

Claim 4. Every odd component of G — S not contained in Odd;(G — S) has
a (1, f)-factor with odd property.

Proof. Let D be an odd component of G — S not contained in Oddf(G — S).
Then (D, f) € B by the definition of Odd;(G — S). Since |D| < |G|, D has
a (1, f)-factor with the odd property by induction. O

Claim 5. If C € Odd;(G — S), then odd;(G — X) < ) .y f(x) for every
D#XcCV(O).

Proof. If |C| = 1, then there is nothing to be proved. Thus assume |C| > 3.
For each ) # X C V(C'), we obtain by (3)

odd (G — S) + odd;(C — X) = odd;(G — SUX) +1

<Y f@)+ ) fla).

€S zeX

Hence odd;(C' — X) < Y . f(z). Since (C, f) ¢ B, this together with the
definition of B implies that we have odd;(G — X) < > . f(z) for every
D#XcCV(0). O

We construct a bipartite graph B with bipartition (S,0dd;(G — S)) in
which two vertices z € S and C' € Odd;(G — S) are joined by an edge of B
if and only if x is adjacent to C' in G.

Claim 6. For every ) # Y C S, we have |[Ng(Y)| > Y .y f(z), and
INB(S)| = [0dds (G = S)| = ) peq f(2)-
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Proof Since G is connected, it follows that Np(S) = Odds(G — S). Let
0 #Y C S. Since Odd;(G — S) — Ng(Y) C Odds(G — (S —Y)), it follows
from (2) that

> f@) =Y fla)= Y flz) > oddf(G— (S -Y))

TES €Y zeS-Y
> odd(G—8) — INg(Y)| =Y f(z) — [Ns(Y)].
€S

Hence |[Np(Y)| > >,y f(2), and so Claim 6 holds. O

For a component C' € Odd;(G — S) and a vertex s € S with sC' € E(B),
take an edge e joining s and C' in GG, an let C' + e denote the subgraph of G
obtained from C' by adding the edge e together with its end-point s. Moreover
a function g : V(C' +¢) — {1,2,3...} is defined by letting g(x) = f(x) for
all z € V(C) and g(s) = 1. Then the following claim holds.

Claim 7. Assume that C' € Odd;(G — S) and s € S are are adjacent in B,
and let e and g be as above. Then C + e has a (1, g)-factor Hye with odd
property.
Proof. Let ) # X C V(C +¢e) = V(C) U {s}. We shall show that odd,(C +

—X) <> ey 9(x), which implies that C'+e has a desired (1, g)-factor with
odd property by induction. Note that we have |V(C) U {s}| < |G| because

w(G —5) > 2, and hence Y oy oy 9(2) < Lgeve f(2)-

First assume s € X. If X = {s}, then odd,(C +e—X) =1 = g(s) =

Y sex 9(2); if {s} C X, then by Claim 5, odd,(C + e — X) = odds(C — (X —
{s} <> iex (s 9(x), which implies odd,(C + e — X) < 37\ g(x). Next
assume s ¢ X. If X = V/(C'), then oddy,(C+e—-X)=1<>" _+g(z). Thus
we may assume X # V/(C). Then odd,(C +e — X) < odds(C — X) + 1.
Therefore by Claim 5, odd,(C +e - X) <> ¢ flx) —14+1=> _\g(x),
as desired. 0.

By Claim 7 and Lemma 5, B has a spanning subgraph F' such that

degp(C)=1 forall C' € Odds(G—S), and
degp(s) = f(s) forall s € S.

Consequently, we can obtain a desired (1, f)-factor of G with odd property
by combining (1, f)-odd factors with odd property of all even components of
G — S and all odd components of G — S not contained in Odd;(G — S), and
(1, 9)-odd factors Hye with odd property given in Claim 7 for all edges sC'
of F. O
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