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Abstract

Let G be a graph and H be an abelian group. For every subset S C H a map
¢ : E(G) — S is called an S-flow. For a given S-flow of G, and every v € V(G),
define s(v) = 3, ep(q) ?(uv). Let k € H. We say that a graph G admits a k-sum
S-flow if there is an S-flow such that for each vertex v, s(v) = k. We prove that if G
is a connected bipartite graph with two parts X = {z1,...,2,}, Y = {y1,...,ys} and
Cly--sCpy di,...,ds are real numbers, then there is an R-flow such that s(z;) = ¢;
and s(y;) = dj, for 1 <i <7, 1 <j <sifand only if Y70, ¢; = Y77, dj. Also,
it is shown that if G is a connected non-bipartite graph and ¢y,...,¢, are arbitrary
integers, then there is a Z-flow such that s(v;) = ¢;, for i = 1,...,n if and only if the

number of odd ¢; is even.
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1 Introduction

A simple graph is a graph without loops or multiple edges. Throughout this paper all
graphs are simple. Let G be a graph. The number of vertices and the number of edges of
G is called the order and the size of G, respectively. A graph is k-edge connected if the

minimum number of edges whose removal would disconnect the graph is at least k.

Let G be a graph, V(G) = {v1,...,v,} and E(G) = {e1,...,en} be the vertex set and
the edge set of G, respectively. The adjacency matriz of G, A = (a;j), is an n x n matrix,
where a;; = 1 if v; and v; are adjacent, and a;; = 0, otherwise. Also, the incidence matriz
of G, N = (n;;), is an n X m matrix, where n;; = 1 if the vertex v; is incident with the
edge e;, and n;; = 0, otherwise. Let 3 be an n x 1 matrix whose all entries are one. An
n X n non-negative matrix A = (a;;) is said to be primitive if AF > 0, for some positive
integer k. A graph G is said to be primitive if there exists an integer £ > 0 such that for
all ordered pairs of vertices 4,7 € V(G) (not necessarily distinct), there is a walk from 1
to j of length k. If A is the adjacency matrix of a graph G, then the (4, 7)th entry of A*
is the number of walks of length £ from v; to v; in G; see Theorem 1.7 of [2]. So, a graph

G with the adjacency matrix A is primitive if A¥ > 0, for some positive integer k.

Let G be a graph and H be an abelian group. Let H* = H \ {0}. For every subset
S C Hamap ¢ : E(G) — S is called an S-flow. For a given S-flow of G and every
v € V(G), define s(v) = 3 ,,cp(q) #(uv). Let k be an element of H. We say that a graph
G admits a k-sum S-flow if there exists an S-flow ¢ of G such that for each vertex v,
s(v) = k. A 0-sum S-flow was first defined in [1].

In this paper we obtain some necessary and sufficient conditions under which a graph
admits a 1-sum R-flow or a 1-sum Z*-flow. Also, we shall generalize the concept of k-sum
S-flow.



2 A generalization of k-sum S-flows

Let G be a graph and V(G) = {v1,...,v,}. In this section we generalize the concept of
k-sum S-flows. We would like to study those graphs with the property that for any given

real numbers ¢y, ..., ¢y, there exists an R-flow such that s(v;) = ¢;, fori=1,...,n.

The following interesting result was proved in [3, p.63].

Theorem 1. The incidence matriz of a connected graph of order n has rank n if it has

an odd cycle and has rank n — 1, otherwise.

Now, we have the following result.

Theorem 2. Let G be a connected non-bipartite graph with the vertex set {vy,...,v,}
and c1,...,cy be real numbers. Then there is an R-flow of G such that s(v;) = ¢;, for
1=1,...,n.

Proof. Assume that N is the incidence matrix of G and E(G) = {e1,...,em}. By
Theorem 1, rank(N) = n. Since, N is full rank, the columns of N generate R". Thus
there is a real vector Z = [z, ..., zyu]? such that NZ = [c1, ..., c,]7. Now, define

¢(e;) = z;, for i =1,...,m. Obviously, s(v;) =¢;, fori=1,...,n. O

Remark 1. By the proof of Theorem 2, one can find an R-flow of G with the desired

property in which at most n edges have zero values.

Remark 2. In Theorem 2 one can replace the real numbers with any field of characteristic

Zero.

Theorem 3. Let G be a connected bipartite graph with two parts X = {z1,...,2,} and
Y ={y1,...,ys}. Letci,...,c, and dy,...,ds be real numbers. Then there is an R-flow
of G such that s(xz;) = ¢; and s(y;) = dj, for 1 < i < r, 1 < j < s if and only if



Proof. The necessity is obvious, and so we shall prove the sufficiency. Let G be a
bipartite graph of order n and size m and N be the incidence matrix of G. By Theorem
1, rank(N) = n — 1. Suppose that N’ is the column reduced echelon form of the matrix
N. We note that the column spaces of N and N’ are the same. Since rank(N) =n — 1,
N’ has the following form:

Figure 1

where the size of zero matrix is n by m—n-+1. Clearly, [cy, co, ..., ¢, d1, da, ..., ds 1, z]"

is contained in the column space of NV, for some £ € R. Thus there exists an R-flow of G
such that s(z;) = ¢;, s(yj) = dj, for 1 <i <7, 1 <j<s—1. Since D i, ¢; = > 7, dj,

we conclude that s(ys) = z = ds and the proof is complete. O
Now, we state Theorem 3 for the integers.

Theorem 4. Let G be a connected bipartite graph with two parts X = {z1,...,2,} and
Y ={y1,...,ys}. Letci,...,c, and dy,...,ds be integers. Then there is a Z-flow of G such
that s(z;) = ¢; and s(y;) = dj, for 1 <i<r, 1 <j<sifand only if 371y c; = > 2%, d;.

Proof. One side is clear. We prove the other side by induction on ¢ = ., |¢;| +
> j=1ldj]. T t = 0, then the assertion is trivial. Let ¢ > 0. First assume that there are
two elements in the set {c1,..., ¢} with the different signs. Assume that ¢, is positive
and ¢, is negative. By the induction hypothesis, there exists a Z-flow of G such that for
each i, s(z;) = ¢, s(yj) = dj, for 1 < <r—2,1<j <sand s(z,_1) = ¢,—1 — 1,

s(zy) = ¢, +1. Now, since G is connected, there exists a path of even length between z, 1



and z,. Now, add +1 and —1 to the values of all edges of this path alternatively starting
from z, 1 to obtain the desired Z-flow. Now, assume that one element of {c1,...,¢,} and
one element of {d;,...,ds} have the same sign, say ¢, and ds, and they are positive. By
induction hypothesis there exists a Z-flow of G such that for each i, s(z;) = ¢;, s(y;) = d;,
1<i<r—-1,1<j<s-1,s(xz)=¢ —1, s(ys) = ds — 1. Now, since G is connected,
there exists a path of odd length between z, and y,. Add +1 and —1 to the values of
all edges of this path alternatively starting from z, to obtain the desired Z-flow. Now,
assume that both ¢, and d; are negative. By induction hypothesis there exists a Z-flow of
G such that for each i, s(z;) = ¢;, s(y;) =dj, 1 <i<r—-1,1<j<s—-1,s(z) =c¢ +1,
s(ys) = ds+ 1. Consider a path between z, and ys and add —1 and +1 to the values of all
edges of this path alternatively starting from z, to obtain the desired Z-flow. Note that

since Y i, ¢ = ijl d;, one of the above cases occurs and the proof is complete. O

In [1], the following theorem was proved.

Theorem 5. (i) If G is a connected bipartite graph, then G has a 0-sum Z*-flow if and
only if it is 2-edge connected.

(i7) Suppose G is not a bipartite graph. Then G has a 0-sum Z*-flow if and only if for
any edge e of G, G\{e} has no bipartite component.

Now, we are ready to state the next result.

Theorem 6. Let G be a 2-edge connected bipartite graph with two parts X = {z1,...,z,}
and Y = {y1,...,ys}. Suppose that ci,...,cp,d1,...,ds are integers. Then there is a
Z*-flow of G such that s(z;) = ¢; and s(y;) = dj, for 1 <i <r,1<j <sif and only if

Proof. One side is clear. Now, assume that >3i_;¢; = >7_, d;. Let |[E(G)| = m. By
Theorem 4, there is U € Z™ such that NU = [c1, ..., ¢, dy, ..., ds]T. By Theorem 5,
G admits a 0-sum Z*-flow. So, there exists a nowhere-zero vector V' € Z™ such that
NV = 0. Clearly, there is a € Z such that no entry of U 4 aV is zero. Thus N(U +aV) =

[c1, ..., ¢, dy, ..., ds]T and the proof is complete. O



Before proving the next result we need the following theorem.

Theorem 7.[5] A graph G is primitive if and only if G is connected and contains an odd

cycle.

Now, we prove the following result.

Theorem 8. Let G be a connected non-bipartite graph with the vertex set {vy,...,v,}
and ¢, ..., c, be integers. Then there is a Z-flow such that s(v;) = ¢;, fori=1,...,n if

and only if the number of odd c; is even.

Proof. First suppose that G admits a Z-flow, ¢ : E(G) — Z, such that s(v;) = ¢;, for

1=1,...,n. We have
n

2 ple) =D s(wi) = a
@) i=1

ecE =1

Clearly, this implies that the number of odd ¢; is even.

Now, assume that the number of odd ¢; is even, fori = 1,...,n. Let A be the adjacency
matrix of G. Since, G is connected and contains an odd cycle, by Theorem 7, there exists
a positive integer k such that A¥ > 0. Since A* > 0 implies that A**! > 0, we can assume
that & is odd and A* > 0. So for every v; there is a closed walk, say C;, of length k& which
contains v;, for i = 1,...,n, see Theorem 1.7 of [2]. With no loss of generality assume that
c1,...,¢; are even integers and c¢41,...,¢, are odd integers. Now, assign § and —% to
E(C;) alternatively, for i = 1,...,¢ and assign [§ | and —|% ] to E(C;) alternatively, for
i=t+1,...,n. If C; and C; have some common edges, then add the two values of each
edge which is contained in both C; and Cj, for 1 <4,j <n. So, s(v;) =¢;, fori=1,...,¢
and s(v;)) =¢; — 1, for i =t+1,...,n. On the other hand, there exists a walk of length
k between v; and v; 41, for i =t +1,...,n — 1. Let W; be a walk of length k£ between v;
and v;q1, for i =t+1,t+3,...,n — 1 (Note that t + 1 and n — 1 have the same parity).
Assign 1 and —1 to all edges of W;, alternatively, for i =¢t+1,t+3,....,n — 1. If W; and

W; have some common edges, then add two values of each edge which is contained in both



W; and Wj. By continuing this procedure and assigning zero to each edge of G which is

contained in no W; or Cj;, we obtain a labeling with the desired property. O

Corollary 1. Let G be a connected non-bipartite graph with the vertex set {vi,...,v,}
such that the removing of no edge does not make bipartite component and ci,...,c, be
arbitrary integers. Then there is a Z*-flow such that s(v;) = ¢;, for i = 1,...,n if and

only if the number of odd c; is even.

Proof. Let N be the incidence matrix of G. Suppose that the number of ¢; is even. By
the previous theorem there exists U € Z™ such that NU = [cy, ..., ¢,;]7, where m is the
size of G. By Theorem 5, Part (ii), there exists a nowhere-zero vector U’ € Z™ such that
NU’' = 0. By considering a vector U + rU’, for some suitable r € Z, we obtain a Z*-flow

such that s(v;) =¢;, fori=1,...,n. O

3 1-sum S-flows in graphs

The next lemma provides a necessary condition for the existence of a 1-sum Z-flow in a

graph.

Lemma 1. Let G be a graph of order n and k be an odd integer. If G admits a k-sum

Z-flow, then n is even.

Proof. Let ¢ be a k-sum Z-flow. We have

kn = Z s(v) =2 Z o(e).

veV(G) e€E(G)

Thus n is even. O

Before stating the next theorem we need one lemma.



Lemma 2. Let G be a graph such that for every e € E(G), there ezists an even cycle

containing e. Then G admits a 0-sum Z*-flow.

Proof. Assume that E(G) = {e1,...,en}. By assumption each e; is contained in an
even cycle, say C;. Now, assign 2 and —2 to E(C}), alternatively and assign 0 to the
remaining edges of G. In the new edge labeling of G add 22 and —22 to the values of
E(Cs), alternatively and keep the values of the remaining edges of G. Continue this
procedure for every e; and add 2° and —2' to the values of E(C;), alternatively and keep
the values of the remaining edges of G in each step, for i = 3,...,m. By this method we

obtain a 0-sum Z*-flow for G. O

Theorem 9. Let G be a connected non-bipartite graph such that for every e € E(G),

there exists an even cycle containing e. Then G admits a 1-sum Q" -flow.

Proof. Let N be the incidence matrix of G and E(G) = {e1,...,en}. By Lemma 2,
there exists a nowhere-zero integer vector Y such that NY = 0. Also, by Theorem 2 and
Remark 2, there exists X € Q™ such that NX =j. Clearly, there is an integer a such that
no entry of X + aY is zero. So, N(X + aY) =j. Hence G admits a 1-sum Q*-flow. O

Theorem 10. Let G be a connected non-bipartite graph of even order such that every

edge is contained in an even cycle. Then G admits a 1-sum Z*-flow.

Proof. Let A be the adjacency matrix of G. Since, G is connected and contains an odd
cycle, by Theorem 7, we conclude that there exists a positive integer k such that A* > 0.
Since A¥ > 0 implies that A**! > 0, we can assume that k is odd and A% > 0.

Let V(G) = {v1,...,v2n} and |E(G)| = m. For each i, 1 < i < n, there exists a walk of
length k, say Ws;_1, between vo; 1 and wvo;. Assign 1 and —1, alternatively to all edges of
W1. Then assign 1, —1, alternatively to all edges of W3. If Wy and W3 have some common
edges, then add the two values of each edge which is contained in both W; and W3. By

continuing this procedure and assigning zero to each edge of G which is contained in no



Ws,; 1, we obtain a 1-sum Z-flow for G. Let N be the incidence matrix of . Thus there
exists X € Z™ such that NX =j. By Lemma 2, G admits a 0-sum Z*-flow, so there exists
a nowhere-zero vector Y € Z™ such that NY = 0. On the other hand, for every a € Z,
N(X 4+ aY) =j. Therefore G admits a 1-sum Z*-flow and the proof is complete. O

In the sequel, we want to determine those bipartite graphs which admit a 1-sum Z*-

flow. The next result is an immediate consequence of Theorem 6.

Theorem 11. Let G be a 2-edge connected bipartite graph with two parts X and Y. Then
G admits a 1-sum Z*-flow if and only if | X| = |Y|.

Remark 3. The 2-edge connectivity in Theorem 11 is not superfluous. Let G be the
graph shown in the Figure 2. It is not hard to check that G does not admit a 1-sum
Z*-flow.

Figure 2
Question. Determine a necessary and sufficient condition under which a bipartite graph
admits a 1-sum R*-flow or a 1-sum Z*-flow?

A matrix is said to be totally unimodular if every square submatrix of it has determinant
—1,0 or 1.

In 1931, Egervary [4] proved the following theorem.

Theorem 12. Let G be a graph with the incidence matriz N. Then G 1is bipartite if and
only if N 1is totally unimodular.

Now, we have the following theorem.



Theorem 13. Let G be a bipartite graph and k be an integer. If G admits a k-sum R-flow,
then G admits a k-sum Z-flow.

Proof. Let N be the incidence matrix of G and rank(N) = r. Then we can assume

A B

that N = , where A is an r by r matrix and rank(A) = r. Since N is totally

unimodular, we have A~ € M,(Z) and this implies that

I A'B
0 D-CA™'B

€ Myxm(Z).

A1 0
—CA™' T

Since rank(N) = r, we find that D — CA~!B = 0. By assumption the equation

A~ 0] )
kj

Z1

(11 aB]| i |= et

Tm

has a real solution. Thus the equation NX = kj has an integer solution and the proof is

complete. O
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