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Abstract

We consider some problems on red and blue points in the plane
lattice. An L-line segment in the plane lattice consists of a vertical
line segment and a horizontal line segment having a common endpoint.
There are some results on geometric graphs on a set of red and blue
points in the plane. We show that some similar results also hold for
a set of red and blue points in the plane lattice using L-line segments
instead of line segments. For example, we show that if n red points
and n blue points are given in the plane lattice in general position,
then there exists a non-crossing geometric perfect matching covering
them each of whose edges is an L-line segment and connects a red
point and a blue point.

1 Introduction

We consider some problems on red points and blue points in the plane lattice
7?2 motivated by some results in the plane R?, where Z and R denote the
set of integers and the set of real numbers, respectively. For a point x in
the plane, an L-shaped line consisting of a vertical ray and a horizontal ray
emanating from z is called an L-line with corner z. A vertical line and a
horizontal line passing through x are also considered as special L-lines with



corner x. So for every point x, there are exactly six L-lines with corner z,
and two of them are usual lines (see in Fig. 1).
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Figure 1: L-lines with corner z.

We regard L-lines as ”lines” in the plane lattice, and consider some prob-
lems from this point of view. For two points in the plane lattice which are
not on the same vertical or horizontal line, there are two L-lines passing
through them (see (1) in Fig. 2). On the other hand, for any two points in
the plane, there exists exactly one line that passes through them. So there
is a difference between lines in the plane and L-lines in the plane lattice.
However, as we shall show, they have some nice common properties.

Remark Let S be a set of points in the plane lattice. Usually, S is defined
to be in general position if every vertical line or horizontal line contains at
most one point of S. On the other hand, by using L-lines, S can be defined
to be in general position if no three points of S lie on the same L-line (see
(2) in Fig. 2). If S is in general position by means of the new definition, then
the highest point and the lowest point of S may lie on the same vertical line,
however for any other point x of S, the vertical line passing through x does
not pass through any point of S — {z}. Similarly, the rightmost point and
the leftmost point of S may lie on the same horizontal line, but for any other
point y of S, the horizontal line passing through y does pass through any
point of S — {y}. Therefore, the above two definitions of general position are
slightly different, but they require the same condition for most points in S,
and thus the difference is small.

Hereafter, to avoid confusion and for simplicity, we say that S is in general
position if every vertical line and horizontal line passes through at most one
point of S. Namely, we use a standard definition of general position®.

'Tn the plane, no three points lie on the same line if and only if every three points make
a triangle. Similarly, in the plane lattice, every vertical line and horizontal line passes
through at most one point if and only if every two points make a digon with two L-line
segments.
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Figure 2: (1) Two L-lines passing through two given points. (2) A set of
points no three of which lie on the same L-line. (3) A rectangular hull of a
set of points in the plan lattice in general position.

2 Geometric Alternating Matchings

A set X of points in the plane is called in general position if no three points of
X lie on the same line. It is well-known that if n red points and n blue points
are given in the plane in general position, then there exists a non-crossing
geometric perfect matching joining the red points and the blue points, where
a geometric matching is a matching consisting of line segments. We start
with a result on perfect matchings with L-line segments in the plane lattice.

Theorem 1. Suppose that n red points and n blue points are given in the
plane lattice in general position, where n > 1 is an integer. Then there exists
a non-crossing perfect matching with L-line segments joining the red points
and the blue points (Fig. 3).
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Figure 3: A non-crossing perfect matching with L-line segments joining red
points and blue points.

We need some new notation. In this paper only axis-parallel rectangles
will be used, and so a rectangle always means such a rectangle, and thus
each edge of an rectangle is a vertical or horizontal line segment. For a set S



of points in the plane lattice, the rectangular hull of S, denoted by rect(S),
is the smallest closed rectangular enclosing S ((3) in Fig. 2). In particular,
every edge of rect(S) contains at least one point of S. For a set X, the
cardinality of X is denoted by |X| or #X.

Proof of Theorem 1. We prove Theorem 1 by induction on n. If n =1, then
the theorem holds. So we assume n > 2. Let X be the set of points of S on
the boundary of the rectangular hull rect(S). Then 2 < |X| < 4. Suppose
that X contains both a red point and a blue point. Then there exists an
L-line segment L; that is on the boundary of rect(S) and joins a red point x
to a blue point y of X. By applying the induction hypothesis to S — {z, y},
we obtain a non-crossing perfect matching with L-line segments joining the
red points and the blue points of S — {z,y}. By adding L; to this matching,
we can get the desired non-crossing perfect matching.

Next assume that all the points of X have the same color. By symmetry,
we may assume that all the points of X are red. For every vertical line £ in
the plane passing through no points of S, define a function f(I) by

f(¢) = F{the red points of S to the left of ¢}
—+##{the blue points of S to the left of ¢}.

Then f(¢;) = 1 for a vertical line ¢, immediately to the right of the left
vertical edge of rect(S), and f(¢;) = —1 for a vertical line ¢, immediately
to the left of the right vertical edge of rect(S). Moreover, we continuously
move a vertical line ¢ from ¢; to ¢5. Then f(¢) changes by +1 when /¢ crosses
a point of S. Hence there exists a vertical line {3 such that f(¢3) = 0 and /3
passes through no point of S. By applying the induction hypothesis to the
points of S to the left of /3 and those of S to the right of /3, respectively, we
can obtain the desired non-crossing perfect matching (See Fig. 4). O
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Figure 4: Moving a vertical line ¢ from ¢; to /5 to find /3 such that f(¢3) = 0.

3 Balanced subdivisions

We now turn our attention to another well-known theorem so called Ham-
sandwich Theorem, which says that if 2m red points and 2n blue points are
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given in the plane in general position, then there exists a line that bisects
both red points and blue points. A similar result related to this theorem also
holds by using L-lines as in the following theorem.

Theorem 2 ([4], [7] ). Let m > 1 and n > 1 be integers. If 2m red points
and 2n blue points are given in the plane lattice in general position, then
there exists an L-line that bisects both red points and blue points (Fig. 5).

Figure 5: An L-line that bisects both red points and blue points.

The above Theorem 2 was generalized as follows.

Theorem 3 (Bereg [2]). Suppose that km red points and kn blue points are
given in the plane lattice in general position, where m > 1, n>1 and k > 2
are integers. Then there exists a subdivision of the plane into k regions with
at most k—1 horizontal line segments and at most k—1 vertical line segments
such that every region contains precisely n red points and m blue points.

Barany and Matousek obtained the following theorem about another bi-
section.

Theorem 4 (Bardny and Matousek [1]). Suppose that 2m red and 2n blue
points are given in the plane in general position, where m > 1 and n > 1
are integers. Let p be a point in the plane such that the red points, the blue
points and p are in general position. Then there exist two rays emanating
from p that bisect both red points and blue points.

A ray in the plane is a half-line emanating from a point. Similarly, an
L-ray in the plane is defined to be a half L-line emanating from a point, and
so an L-ray has a corner and an end-point (see Fig. 6). We show that a
similar result holds in the plane lattice using L-rays.

Theorem 5. Suppose that 2m red points and 2n blue points are given in the
plane lattice in general position, where m > 1 and n > 1 are integers. Let
p be a point in the plane each of whose coordinates is not an integer. Then
there exist two L-rays emanating from p that bisect both red points and blue
points (see Fig. 6).
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Figure 6: (1) Three types of two L-rays emanating from p, which subdivide
the plane into two regions. (2) Two L-rays emanating from p that bisect
both red points and blue points.

Proof. First take a big rectangle R that contains all the red points, the blue
points, and p. We subdivide R into four regions by the horizontal line and
the vertical line passing through p. Then for each given red or blue point x
contained in the right-lower region, we assign a new point y with the same
color as x on the right edge of R such that x and y lie on the same horizontal
line (see Fig. 7). Every given point 2’ in other regions, we assign a point ¢/’
with the same color as ' on the boundary of R as shown in Fig. 7.

Since given points are in general position, the assignment defined above
is a bijection. It is easy to see that the boundary of R can be divided into
two continuous parts so that each part contains precisely m red points and
n blue points (see two bold marks on the boundary of R in Fig. 7). Notice
that the reader is refereed to [3], for example, about the proof of this fact.
Then we can obtain the desired two L-rays, which emanates from the point
p and passes through the partitioning marks on the boundary. O
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Figure 7: The given red and blue points are assigned to red and blue points,
respectively, on the boundary of R.



4 Geometric Spanning Trees

For a set X of points in the plane, we can draw non-crossing geometric
spanning trees on X each of whose edges is a line segment joining two points
of X. In this paper, we call such a spanning tree X-tree. Given a set R of
red points and a set B of blue points in the plane in general position, the
minimum number of crossings of R-tree and B-tree is determined in the next
theorem, where conv(X) denotes the convex hull of X.

Theorem 6 (Tokunaga [6] ). Let R and B be two disjoint sets of red points
and blue points such that RUB is in general position. Let T(R, B) denote the
number of edges xy of the boundary of conv(RU B) such that one of {z,y}
is red and the other is blue. Then T(R, B) is even, and the minimum number
of crossings in Tr U Tp among all pairs { R-tree Tk, B-tree Tg} is equal to

{102 )

In particular, we can draw an R-tree and a B-tree without crossings if and
only if T(R, B) < 2.

We consider a similar problem on the plane lattice, and prove a similar
result as shown in the following Theorem 7. For a set X of points in the
plane lattice in general position, we can draw non-crossing spanning trees
on X each of whose edges is an L-line segment connecting two points of X,
which is called a spanning tree on X with L-line segments or simply X -tree
with L-line segments. Hereafter, we consider only non-crossing spanning trees
with L-line segments, and so X-tree means X-tree with L-line segments (see
Fig. 8). For a tree T" and a vertex v € V(T'), the degree of v in T is denoted
by degr(v). The maximum degree of T' is denoted by A(T).

O O
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(1)  X-tree (2)  X-tree of degree at most 3

Figure 8: Examples of X-trees in the plane lattice.



Theorem 7. Let R and B be two disjoint sets of red points and blue points in
the plane lattice such that RU B is in general position. Let 7*(R, B) denote
the number of L-line segments xy on the boundary of rect(R U B) such that
one of {x,y} is red and the other is blue. Then 7*(R, B) is 0, 2, or 4, and the
minimum number of crossings in TpUTg among all pairs { R-tree Tr, B-tree
T} is equal to 1 if T (R, B) = 4. Moreover, if T*(R, B) < 2, then we can
draw an R-tree Tr and a B-tree Ty without crossings such that A(Tg) < 3
and A(Tg) < 3 (see Fig. 9).

R L i
(1) w=R.,B)=4 (2) *(R,B)=2

Figure 9: Two spanning trees R-tree and B-tree with minimum number of
crossings.

Note that, if 7(R, B) = 4 then any Tx and T cross at least once. In
fact, let z, € R, y. € R, x, € B, and y, € B be the left, right, top, bottom
points in rect(R U B), respectively. The path in T starting from z, to y,
and the path in Tg starting from x; to 1, cross at least once.

In order to prove Theorem 7, we need some definitions and a lemma. An
orthogonal spiral polygon is a polygon whose boundary consists of two chains
of edges, which are called outer chain and inner chain, respectively. Every
internal angle of the outer chain is 7/2 and every internal angle of the inner
chain is 37/2 (see (1) in Fig. 10). Notice that we allow that an edge of the
inner chain is included in an edge of the outer chain, namely, some part of
polygon may consist of only edges (no inner points) and be flattened.

Lemma 8. Let P be an orthogonal spiral polygon in the plane lattice and
S be a set of points in the plane lattice in general position contained in P.
Assume that every edge of the outer chain of P contains exactly one point
of S, and every edge of the inner chain contains exactly one point of S or is
included in another edge of the outer chain. Then there exists S-tree T such
that (i) A(T) < 3 and (ii) T is included in P (See (2) in Fig. 10).

Proof. An edge of the inner chain of P included in another edge of the outer
chain is called flattened rectangle. Note that a flattened rectangle may have
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Figure 10: (1) An orthogonal spiral polygon P with an outer chain and
an inner chain consisting of bold and broken edges, respectively. (2) An
orthogonal spiral polygon P with a point set S and an S-tree T such that
A(T) < 3.

one point of S by our assumption for P. In (2) of Fig. 10, we can find two
flattened rectangles such that one of them has one point of S and another
one has no points of S. We may assume that no point of S is at a corner
of the inner chain of P if the corner is not contained in an edge of the outer
chain. Otherwise, we may move one of the edges incident to the corner so
that the resulting orthogonal spiral polygon P’ is included in P. In the other
words, we consider a minimal orthogonal spiral polygon included in P on S.

In preparation for our construction of an S-tree, we decompose the or-
thogonal spiral polygon P into closed rectangles as shown in Fig. 11. If P
has no flattened rectangles, then we decompose P as shown (1) in Fig. 11,
where X, Y, and Z denote closed rectangles. The top edge of Y is included
in the bottom edge of X, and the left edges of X and Y forms an edge of
the outer chain of P. Two consecutive rectangles Y and Z have the same
properties, and so on.

If P has some flattened rectangles, then we decompose P as shown (2)
in Fig. 11, where each X; denotes each closed rectangle. Some rectangles
(X3, X5, Xg, Xg in Fig. 11) are flattened. Remove these flattened rectangle
from P. Then, the remaining parts of P consists of some orthogonal spiral
polygons, so we decompose each of these as shown (1) in Fig. 11.

We denote these decomposed rectangles by X, Xs, ..., Xj in spiral order.
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Figure 11: (1) A decomposition of an orthogonal spiral polygon without
flattened rectangles. (2) A decomposition of an orthogonal spiral polygon
with flattened rectangles, where X3, X5, Xg, Xg are flattened rectangles and
only Xjg contains one point of S.

Claim 1. No three flattened rectangles without points of S are consecutive
in P.
Proof. Otherwise, some edge of the outer chain has no points of S, which

contradicts our assumption. ]

Fig. 12 shows an outline of our construction of an S-tree. First, construct
a path in each non-flattened rectangle X; from ”outer” point to ”inner” point
as shown (1). Then, we connect those paths as shown (2).

== | =5 |
,V—r? Y —
(1) )

Figure 12: An outline of our construction of an S-tree.

We shall show more precisely how to do it. Each non-flattened rectangle
X, consists of four edges. Exactly one of these edges includes an edge of the
inner chain of P. We regard this edge as the bottom edge of the rectangle.
Then, in accordance with the bottom edge, we can define top, right, and left
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edge of the rectangle. Let p;, ¢;, r;, t; be the most top, bottom, right, left
points of X; N S, respectively. We construct a path P; with L-line segments
that satisfies the following three properties: (i) P; starts at p; and ends at
g;. (ii) P; passes through all the points in X; NS from top to bottom. (iii)
Each L-line segment xy such that x is upper than y, starts at x to the right
or left and ends at y from above. (See Fig. 13).

p;

Figure 13: A path P; on Xj.

For each flattened rectangle X; with one point z; € S, let p; = ¢; =1, =
t; = x; and P; = {x;}. For each flattened rectangle X; without points of S,
let a; be the center point on X;, p; = q; = r; = t; = a;, and P, = (). We will
use the points a; as dummy points of P;.

Next, we connect each two paths P; and P;,; as follows.

Case 1. Py # 0.

In this case, we can always connect the bottom point ¢; and the right
point ;.1 with an L-line segment or a line segment without crossings as
follows. If P, = () or |P;| = 1 then X; is flattened rectangle. Thus, by the
definition of decomposition of P, the bottom point ¢; is on an edge of the
inner chain of P. Therefore, we can connect ¢; and r;,; without crossings as
shown in Fig. 14 (1),(2), and (3).

If |P;| > 2 then similarly the bottom point ¢; of P; is on an edge of the
inner chain of P, since otherwise some edge of the inner chain has no points
of S and is not included in an edge of the outer chain, which contradicts our
assumption. Hence, in X;, a horizontal line segment from ¢; to the left can be
added to the path P; for connecting P; and P;;, and this segment does not
overlap with another segment from X; ;, namely from the right. Therefore,
we can connect ¢; and r; ;1 without crossings as shown in Fig. 14 (4). Note
that if |P;y¢] > 2 and ¢; = r;41, that is ¢; is on a corner of the inner chain,
then the degree deg,(g;) may be four. However, we assumed that no point
of S is at a corner of the inner chain of P if the corner is not contained in
an edge of the outer chain.

11



Figure 14: How to connect each two paths P; and P if Py # 0. The
black points are dummy points.

Case 2. P =0.

In this case, we can always connect the left point ¢; and the dummy point

a;11 with an L-line segment or a line segment without crossings as shown in
Fig. 15.

o — O
ti= Vrr? I ti vﬁ
. X q, X 9, X

i 1

i+l ai+1

i+l i+l

(1) 2) €) (4)

Figure 15: How to connect each two paths P; and P if Py = ().

Consequently, by ignoring the dummy points a;, we get a tree T on S
without crossings such that (i) A(T) < 3 and (ii) 7 is included in P. We
shall show that 7" is S-tree, namely, every edge of 1" is L-line segment.

The edges of T" not through dummy points are L-line segments. Thus,
we consider edges of T through dummy points. By Claim 1, there are just
seven cases as shown in Fig. 16, where the bold edges are edges of T through
one or two dummy points.

The cases (1), (4), (5), and (6) in Fig. 16 contradicts our assumption that
every edge of the outer chain of P contains exactly one point of S. In the
other cases, each bold edge is an L-line segment. Therefore, the tree T is a
desired S-tree. Consequently the lemma is proved. O
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Figure 16: Seven cases of edges of T through dummy points.

Proof of Theorem 7. We first prove the theorem in the case where the top
point and the leftmost point in rect(R U B) are red and the bottom point
and the rightmost point in rect(R U B) are blue, in particular, 7*(R, B) = 2.

We take some rectangles containing only red points or blue points, and
obtain two disjoint orthogonal spiral polygons that contain all the red points
and all the blue points, respectively. First take the largest rectangle X; which
contains no blue points, whose top edge is the top edge of rect(R U B) and
whose bottom edge contains a red point (see Fig. 17). Next take the largest
rectangle Y; which contains no red points, whose bottom edge is the bottom
edge of rect(RU B) and whose top edge contains a blue point. Then remove
open region X; UY] together with the red and blue points in X; UY; from
rect(R U B), and denote the resulting rectangle by Rect,, whose red point
set is Ry and blue point set is Bs.

Hereafter we assume that rectangle X; contain no blue points and rectan-
gles Y; contains no red points. Take the largest rectangle X, whose left edge
is the left edge of Rects and whose right edge contains a red point if any.
Namely, if the leftmost point of Rects is blue (i.e., this case may occur if the
leftmost point in rect(R U B) lies on the left edge of X7), then X, consist of
only one edge and contains no inner points and no red points. Similarly, take
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Figure 17: (1) Rectangles X, X,..., X and Y7,Ys, ..., Y5, (2) An or-
thogonal spiral polygon containing all the red points, which is included in
X;U...UXg.

the largest rectangle Y5 whose right edge is the right edge of Rect, and whose
left edge contains a blue point if any. So it may occur that Y5 consists of one
edge and contain no blue points. Then remove open region X, U Y5 and the
red and blue points in Xy U Y, from Recty, and denote the resulting rectan-
gle by Rects, whose point set is R3 U B3. Note that if X, contains no red
points, then Rects is obtained from Rects only by removing Y5. Moreover,
if X, contains no red points and Y5 contains no red blue points, then Rects
is equal to Recty, but we next take the largest rectangle X3 whose bottom
edge is the bottom edge of Rects and whose top edge contains a red point,
and X3 contains at least one red point.

We repeat the same procedure until rect(Ry U By) contains neither red
points nor blue points (see (1) of Fig. 17). Then X; U Xy, U ... U X} is an
orthogonal spiral polygon containing all the red points. If an edge does not
contain a red point, we move the edge to inside until it contains a red point
or is included in another edge. By repeating this procedure, we can obtain
the desired orthogonal spiral polygon, which contains all the point of R and
each of whose edges either contains one red point or is included in another
edge. By lemma 8, we can obtain a spanning tree with L-line segments on R
with maximum degree at most 3. Similarly, we can obtain a blue spanning
tree with maximum degree at most 3, and it is clear that these two spanning
trees do not cross.

We next consider the case where 7*(R, B) = 2 and the top point, the
leftmost point and the bottom point in rect(RUB) are red and the rightmost
point in rect(R U B) is blue (see Fig. 18).
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Figure 18: The top point, the leftmost point and the bottom point in rect( RU
B) are red and the rightmost point in rect(R U B) is blue.

We first take a rectangle X; as above. Then rect(RUB) — X, satisfies the
condition of the case discussed above, and so we can apply the procedure to
take Xo, Y5, X3,Y3, ..., Xi, Ys. Then we can obtain two disjoint orthogonal
spiral polygons from X;U---U X and YoU- - -UY}, respectively, and thus we
can get the desired two spanning trees. In the other cases of 7*(R, B) < 2,
we can similarly obtain the desired two spanning trees.

We finally consider the case where 7*(R, B) = 4, the rightmost point and
the leftmost point of rect(R U B) are red, and the top point and the bottom
point of rect(R U B) are blue (see Fig. 19).

First take the largest rectangle X; whose left edge is the left edge of
rect(RU B) and whose right edge contains a red point. Let 7, and ry be the
leftmost and the rightmost red points in X, respectively. We construct a
path starting at r; ending at ry from left to right as shown in (1) of Fig. 19.
Then remove X; and their points from rect(RU B), and denote the resulting
rectangle by Rect;, whose point set is [?; U Bj.

Next take the largest rectangle Y; whose bottom edge is the bottom edge
of Rect; and whose top edge contains a blue point. Let b; and by be the
bottom and the top blue points in Yj, respectively. We construct a path
starting at b; from bottom to top as shown in (1) of Fig. 19. Then remove
Y] and their points from Rect;, and denote the resulting rectangle by Rects
with point set Ry U Bs.

We take the largest rectangle X, whose bottom edge is the bottom edge
of Recty and whose top edge contains a red point. Let b3 be the bottom point
in By. We connect b, and b3 by an L-line segment such that a horizontal line
segment starts at bs.

15
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Figure 19: An outline of our construction of an R-tree and a B-tree with
exactly one crossing. Three cases on the place of rs.

Let r3 be the rightmost red point in Xy. Remove X, \ {73} and their
points from Rects, and denote the resulting rectangle by Rects with point
set R3U B3. Then 7*(R3, B3) = 2, and so there exist a red R3-tree T}, and a
blue Bs-tree T;. When we construct these two trees, we first take the largest
rectangle that contains rj.

By the construction method for S-tree in the proof of Lemma 8, we can
add a horizontal line segment to the left-hand side of r3. Then, we construct
a path starting at r5 ending at r3 from left to right as shown in (1) of Fig. 19.
Wherever r3 is, exactly one L-line segment crosses the L-line segment bybs.
(See Fig. 19)

Consequently we obtain the desired red panning tree and blue spanning
tree with exactly one crossing, and the proof is complete. [O.

The degrees of points of our R-tree and B-tree in the proof of Theorem
7 is at most 3 except b3. We now give a problem concerning Theorem 7.

Problem 9. In Theorem 7, even if T*(R, B) = 4 then is it possible to require
that A(Tg) < 3 and A(Tg) < 3 ? Moreover, is it possible to replace a
spanning tree with mazimum degree 8 by a Hamilton path (i.e., a spanning
tree with mazimum degree 2) ?

We conclude this paper with the following conjecture. Let 7" be a tree
and P be a set of |T| points in the plane lattice in general position, where
|T| denotes the order of T. If T' can be drawn on P without crossing such
that each edge of T is an L-line segment connecting two points of P, then
we say that 7' can be drawn on P with L-line segments (see Fig. 20).
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Figure 20: (1) A tree 7" with maximum degree 3. (2) a set P of |T| points
in the plane lattice in general position. (3) 7 is drawn on P with L-line
segments without crossing.

Conjecture 10. Let T be a tree with maximum degree 3, and let P be a set
of |T| points in the plane lattice in general position. Then T can be drawn
on P with L-line segments without crossing.

A partial solution to this conjecture is given in [5], namely it is proved
that if a tree 7" with maximum degree 3 has the property that all the vertices
of degree 3 is contained in a path of 7', then the conjecture holds.
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