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Abstract1

In this note we prove the following theorem. For any three sets of2

points in the plane, each of n ≥ 2 points such that any three points3

(from the union of three sets) are not collinear and the convex hull of4

3n points is monochromatic, there exists an integer k ∈ {1, 2, . . . , n−1}5

and an open half-plane containing exactly k points from each set.6

1 Introduction7

Bisecting two finite sets of points in the plane by a line is a simple exer-8

cise. The existence of such a line follows from the discrete version of the9

classical ham-sandwich theorem [2] that states that, for any d finite point10

sets S1, S2, . . . , Sd in Rd, there exists a hyperplane h such that each open11

half-space defined by h contains at most half of points of each set Si.12

A short survey related to this paper is found in [1]. Another variation13

of the problem is about balanced lines [3, 4]. A set of points in the plane14

is in general position if any three points are not collinear. Given a set of15

n black and n white points in general position in the plane, a line l is said16

to be balanced if each open half-plane bounded by l contains precisely the17

same number of black points as white points. Our definition of balanced18

line is slightly different from [3] since we do require the line to pass through19

two points of the sets. Pach and Pinchasi [3] proved that the number of20

balanced lines is at least n answering the question of George Baloglou.21

Sharir and Welzl [4] found that balanced lines in the plane are related22

to halving triangles in R3. Let P be a set of 2n+ 1 points in R3 in general23

position, i.e. no four points are coplanar. A halving triangle of P is a triangle24
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spanned by three points in P such that the plane containing the three points25

bisects the remaining points of P (i.e. an open half-space bounded by the26

plane contains exactly n− 1 points of P ). They proved that the number of27

halving triangles is at least n2. This bound is tight since points in convex28

position have exactly n2 halving triangles.29

In this note we study balanced lines for three point sets. Let S = R ∪30

B ∪ G be a set of 3n points in the plane in general position such that31

|R| = |B| = |G| = n ≥ 2 (red, blue and green points). A line l is called32

balanced if an open half-plane bounded by l contains exactly k red, k blue33

and k green points for some k ∈ {1, 2, . . . , n−1}. Unfortunately, a balanced34

line does not always exist, see an example in Figure 1 (b). To develop an35

intuition we check points on the line first.36

It is known that if n red points and n blue points lie on a line in general37

position (i.e., no two points lie on the same position) and if the two end38

points have the same color, then there exists a balanced point.39

Proposition 1 Assume that n red points and n blue points are given on40

the line and no two points lie on the same position, where n is a positive41

integer. If both endpoints are red, then the line can be divided into two parts,42

the right part I1 and the left part I2, by a point so that I1 contains k red43

points and k blue points for some 1 ≤ k ≤ n− 1.44

Remark. Notice that the condition of Proposition 1 that both endpoints45

are the same color is necessary. For example, a configuration rrrbrbrbbb,46

where r and b denote a red point and a blue point, respectively, has no47

balanced point given in Proposition 1.48

We will prove that a balanced line for points in the plane exists if the49

convex hull of S is monochromatic.50

Theorem 2 Let S be a set of 3n ≥ 6 points in the plane in general position51

colored in red/blue/green such that52

(i) the number of points of each color is n, and53

(ii) the vertices of the convex hull have the same color.54

Then there exists a balanced line of S.55

2 Existence of a Balanced Line56

In this Section we prove Theorem 2.57

Proof. Let d be a direction such that any two points of S have different58

projections on a line with slope d. Let p1, . . . , p3n be the order of points in59
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(a) (b)

Figure 1: (a) Balanced line in a set of 18 points such that the convex hull
is monochromatic. (b) A set of 12 points with non-monochromatic convex
hull such that a balanced line does not exist.

direction d. For every k, let rk, bk, gk be the number of red/blue/green points60

in {p1, . . . , pk}, respectively. Consider point qk = (3bk − k, 3gk − k). Note61

that qk 6= (0, 0) if k is not multiple of 3. The theorem follows if qk = (0, 0)62

for some k = 3, 6, . . . , 3(n− 1). Suppose to the contrary that qk 6= (0, 0) for63

any k and any direction d.64

Consider path φd = q1q2 . . . q3n−1. By the definition q1 = (−1,−1) and65

q3n−1 = (1, 1), see Figure 2 (a). There are three types of vectors −−−−→qk−1qk66

depending on the color of pk, see Figure 2 (b). Note that the segments67

qk−1qk do not contain grid points except the endpoints. Therefore path φd68

does not contain the origin. If we trace vector
−→
0a where a traverses path69

φd the turning angle of a, defined as
3n−2∑
i=1

∠qiOqi+1, will be tπ where t is an70

odd integer.71

We show that the turning angle of φd does not change with d. It suffices72

to consider a flip of two points pk and pk+1 when d changes. Suppose that73

pk is red and pk+1 is blue. Then path qk−1qkqk+1 changes to qk−1q
′
kqk+174

as shown in Figure 3 (a). We show that parallelogram qk−1qkqk+1q
′
k does75

not contain the origin. Suppose to the contrary that it contains the origin.76

Then y(qk) = 0 and 3gk = k and k ≡ 0 mod 3. On the other hand x(qk) =77

3bk − k ∈ {−1,−2} contradicting k ≡ 0 mod 3. The case, where pk is blue78

and pk+1 is red, is symmetric.79

Similarly, we can show that parallelogram qk−1qkqk+1q
′
k does not contain80

the origin if pk and pk+1 have different colors, see Figure 2 (b) and (c). Note81

that φ−d is symmetric to φd and its turning angle is −tπ. This contradicts82
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Figure 2: (a) Path φd with turning angle π. (b) Vectors qk−1qk depending
on the color of pk.
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Figure 3: Flipping pk and pk+1. Path qk−1qkqk+1 changes to qk−1q
′
kqk+1.

(a) pk is red and pk+1 is blue. (b) pk is green and pk+1 is blue. (c) pk is red
and pk+1 is green.

the fact that the turning angle φd does not change under rotation of d.83

We finally note that the condition that the numbers of red, blue and84

green points are equal in Theorem 2 is also necessary. It is easy to make an85

example with distinct number of points of each color that does not admit a86

balanced line. It is also natural to change the definition of balanced line in87

this case. For an red points, bn blue points and cn green points are given88

in the plane in general position, a line l is called balanced if an open half-89

plane bounded by l contains exactly ak red points and bk blue points and ck90

green points for some k ∈ {1, 2, . . . , n − 1}. For example, the configuration91

of points shown in Figure 4 has no such balanced line.92
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Figure 4: Example of 15 red, 15 blue and 3 green points without balanced
line. Any line cutting off 5 red points does not intersect the circle enclosing
green points.
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