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Abstract

A tree is called a k-tree if the maximum degree is at most k. We
prove the following theorem, by which a closure concept for spanning
k-trees of n-connected graphs can be defined. Let k ≥ 2 and n ≥ 1
be integers, and let u and v be a pair of nonadjacent vertices of an
n-connected graph G such that degG(u)+degG(v) ≥ |G|−1−(k−2)n,
where |G| denotes the order of G. Then G has a spanning k-tree if
and only if G + uv has a spanning k-tree.

1 Introduction

In this paper, we consider finite simple graphs, which have neither loops nor
multiple edges. Let G be a graph with vertex set V (G) and edge set E(G).
We write |G| for the order of G, i.e., |G| = |V (G)|. For a vertex v of G,
let NG(v) denote the neighborhood of v in G, and denote the degree of v in
G by degG(v), in particular, degG(v) = |NG(v)|. A set X of vertices of G
is called an independent set if no two vertices of X are adjacent. For two
vertices x and y of G, an edge joining them is denoted by xy or yx. For an
integer k ≥ 2, a tree is called a k-tree if the maximum degree is at most k.
In particular, a Hamilton path of a graph is nothing but its spanning 2-tree.

We begin with some known results on spanning k-trees related to our
theorem, and other results on spanning k-tree can be found in [3], [4], [5],
and so on.

1



Theorem 1 (Ore [6]) Let G be a connected graph. If every pair of nonad-
jacent vertices u and v of G satisfies degG(u) + degG(v) ≥ |G| − 1, then G
has a Hamilton path.

The above theorem can be shown by the next theorem, which originally
gives a similar result on Hamilton cycle and introduces a closure concept for
Hamilton path.

Theorem 2 (Bondy and Chvátal [1]) Let G be a connected graph, and u
and v be a pair of nonadjacent vertices of G satisfying degG(u) + degG(v) ≥
|G| − 1. Then G has a Hamilton path if and only if G + uv has a Hamilton
path.

The next theorem is a generalization of Theorem 1.

Theorem 3 (Win [7]) Let G be a connected graph and k ≥ 2 be an integer.
If

∑
x∈S degG(x) ≥ |G|−1 for every independent set S of G with size k, then

G has a spanning k-tree.

The following theorem shows that if every pair of nonadjacent vertices of
a graph G satisfies the condition of our main Theorem 5 with n = 1, then G
has a special spanning tree or a Hamilton cycle.

Theorem 4 (Broersma and Tuinstra [2]) Let k ≥ 2 be an integer and
G be a connected graph. If every pair of nonadjacent vertices u and v of G
satisfies degG(u)+degG(v) ≥ |G|−k+1, then G has either a Hamilton cycle
or an independence spanning tree with at most k end-vertices (leaves), where
a spanning tree is called independence if the set of end-vertices is independent
in G.

The next theorem is our main result.

Theorem 5 Let k ≥ 2 and n ≥ 1 be integers. Let G be an n-connected
graph, and u and v be a pair of nonadjacent vertices of G such that

degG(u) + degG(v) ≥ |G| − 1 − (k − 2)n. (1)

Then G has a spanning k-tree if and only if G + uv has a spanning k-tree.

Notice that the above theorem is a generalization of Theorem 2 since a
Hamilton path is a spanning 2-tree, and that for the theorem with k = 2,
the connectivity n of a graph does not contribute to the lower bound of the
degree sum condition (1).
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We conclude this section by showing that the lower bound of the degree
sum condition (1) is sharp. Let G be the graph shown in Figure 1, which
contains a complete graph Kt of order t and has (k − 1)n + 1 independent
vertices including u that are adjacent to n vertices of Kt. Moreover t is
sufficiently large, for example, t ≥ 2n+1. It is clear that |G| = t+(k−1)n+1,
G is n-connected, and G + uv has a spanning k-tree. However G has no
spanning k-tree since only n vertices of Kt are adjacent to (k − 1)n + 1
independent vertices of G. Furthermore, the two nonadjacent vertices u and
v satisfy

degG(u) + degG(v) = |G| − 2 − (k − 2)n.

Therefore the condition (1) in Theorem 5 is sharp.

   n

Kt
u

v

(k-1)n+1

 

Figure 1: G + uv has a spanning k-tree but not G. Kt denotes the complete
graph of order t with t ≥ 2n + 1.

2 Proof of Theorem 5

Let a and b be two nonadjacent vertices of G that satisfy

degG(a) + degG(b) ≥ |G| − 1 − (k − 2)n. (2)

We prove that if G + ab has a spanning k-tree, then G also has a spanning
k-tree.

Suppose that G + ab has a spanning k-tree T . If ab /∈ E(T ), then T is
the desired spanning k-tree of G, and so we may assume ab ∈ E(T ). Let Ta

and Tb be the components of T − ab that contain a and b, respectively. We
regard Ta and Tb as rooted trees with root a and b, respectively (see Figure 2).
Hence for every vertex x ∈ V (Ta) − {a}, a child x+ of x in Ta is defined,
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that is, x+ is a vertex of Ta adjacent to x such that x lies on the path in Ta

connecting x+ and a. So x has degT (x) − 1 children, and the set of children
of x is denoted by NT (x)+. Similarly, for every vertex y ∈ V (Tb) − {b}, a
child y+ and the set NT (y)+ of children of y in Tb with root b are defined.
Moreover, we briefly denote V (Ta) and V (Tb) by Va and Vb, respectively.

Hereafter we assume that G has no spanning k-tree, and derive a contra-
diction. Let

NG(a) ∩ Vb = {b1, · · · , br},
NG(b) ∩ Va = {a1, · · · , as} (see Figure 2).

It might be occurred that NG(a) ∩ Vb = ∅ and NG(b) ∩ Va = ∅. Note that
b /∈ NG(a) ∩ Vb and a /∈ NG(b) ∩ Va. If NG(a) ∩ Vb �= ∅ and degT (bi) < k for
some i, then T − ab + abi is a spanning k-tree of G, a contradiction. Hence
the following holds.

degT (bi) = k for every 1 ≤ i ≤ r, and

degT (aj) = k for every 1 ≤ j ≤ s. (3)

If a and a certain a+
j are adjacent in G, then G has a spanning k-tree

T − ab − aja
+
j + baj + aa+

j , a contradiction. Hence the following holds.

aa+
j /∈ E(G) for every a+

j ∈ NT (aj)
+, 1 ≤ j ≤ s, and

bb+
i /∈ E(G) for every b+

i ∈ NT (bi)
+, 1 ≤ i ≤ r. (4)

We consider the following two cases.

Case 1. r + s < n．

Since G is n-connected, G has n internally disjoint a-b paths. Hence if
r+s < n, then n− (r+s) paths of the n internally disjoint a-b paths contain
n− (r + s) independent edges joining Va to Vb. These independent edges are
represented by

x1y1, x2y2, · · · , xtyt ∈ E(G), t = n − (r + s) ≥ 1,

xi ∈ Va − {a}, yi ∈ Vb − {b} for all 1 ≤ i ≤ t. (see Figure 2)

Then the following three claims hold.

Claim 1. For every 1 ≤ i ≤ t, degT (xi) = k or degT (yi) = k.

If degT (xi) < k and degT (yi) < k for some 1 ≤ i ≤ t, then G has a
spanning k-tree T − ab + xiyi, a contradiction. Thus this claim holds.
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Figure 2: G + ab has a spanning k-tree T containing ab.

Claim 2. If degT (yi) < k, then ax+
i /∈ E(G) for all x+

i ∈ NT (xi)
+. Similarly,

if degT (xj) < k, then by+
j /∈ E(G) for all y+

j ∈ NT (yj)
+.

Assume that degT (yi) < k and ax+
i ∈ E(G) for some x+

i . Then T −
ab − xix

+
i + xiyi + ax+

i is a spanning k-tree of G, a contradiction. Hence
ax+

i �∈ E(G) for all x+
i ∈ NT (xi)

+. By the same argument, the latter also
holds.

Claim 3. For every 1 ≤ i ≤ t, either no child of xi is adjacent to a in G or
no child of yi is adjacent to b in G.

Assume that a child x+
i of xi is adjacent to a and a child y+

i of yi is
adjacent to b in G for some i. Then G has a spanning k-tree T −ab−xix

+
i −

yiy
+
i + xiyi + ax+

i + by+
i , a contradiction. Hence the claim holds.

Let α, β and γ be the numbers of i ∈ {1, 2, . . . , t} that satisfy the follow-
ing (i), (ii) and (iii), respectively.

(i) degT (xi) = k and degT (yi) < k,

(ii) degT (xi) < k and degT (yi) = k,

(iii) degT (xi) = k and degT (yi) = k.

By Claim 1, t = α + β + γ. Then by Claims 2 and 3 and by (3), (4),
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t = α + β + γ and n = r + s + t, we obtain

degG(a) + degG(b) = |NG(a) ∩ Vb| + |NG(a) ∩ Va|
+ |NG(b) ∩ Va| + |NG(b) ∩ Vb|

≤ r + |Va| − 1 − (k − 1)s − (k − 1)α

+ s + |Vb| − 1 − (k − 1)r − (k − 1)β − (k − 1)γ

= |Va| + |Vb| − 2 − (k − 2)(r + s) − (k − 1)(α + β + γ)

= |G| − 2 − (k − 2)(r + s + t) − t

≤ |G| − 2 − (k − 2)n.

This contradicts the condition (2). Therefore the proof is complete in
this case.

Case 2. r + s ≥ n．

By (3) and (4), we obtain

degG(a) + degG(b) = |NG(a) ∩ Vb| + |NG(a) ∩ Va|
+ |NG(b) ∩ Va| + |NG(b) ∩ Vb|

≤ r + |Va| − 1 − (k − 1)s

+ s + |Vb| − 1 − (k − 1)r

≤ |G| − 2 − (k − 2)n.

Again, we derive a contradiction. Consequently the theorem is proved.
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