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Abstract

A tree is called a k-tree if the maximum degree is at most k. We
prove the following theorem, by which a closure concept for spanning
k-trees of n-connected graphs can be defined. Let k > 2 and n > 1
be integers, and let v and v be a pair of nonadjacent vertices of an
n-connected graph G such that degg(u)+degn(v) > |G| —1—(k—2)n,
where |G| denotes the order of G. Then G has a spanning k-tree if
and only if G + uv has a spanning k-tree.

1 Introduction

In this paper, we consider finite simple graphs, which have neither loops nor
multiple edges. Let G be a graph with vertex set V(G) and edge set E(G).
We write |G| for the order of G, ie., |G| = |V(G)|. For a vertex v of G,
let Ng(v) denote the neighborhood of v in G, and denote the degree of v in
G by degy(v), in particular, deg.(v) = |[Ng(v)]. A set X of vertices of G
is called an independent set if no two vertices of X are adjacent. For two
vertices x and y of GG, an edge joining them is denoted by zy or yz. For an
integer k > 2, a tree is called a k-tree if the maximum degree is at most k.
In particular, a Hamilton path of a graph is nothing but its spanning 2-tree.

We begin with some known results on spanning k-trees related to our
theorem, and other results on spanning k-tree can be found in [3], [4], [5],
and so on.



Theorem 1 (Ore [6]) Let G be a connected graph. If every pair of nonad-
jacent vertices u and v of G satisfies degy(u) + deg(v) > |G| — 1, then G
has a Hamilton path.

The above theorem can be shown by the next theorem, which originally
gives a similar result on Hamilton cycle and introduces a closure concept for
Hamilton path.

Theorem 2 (Bondy and Chvatal [1]) Let G be a connected graph, and u
and v be a pair of nonadjacent vertices of G satisfying degq(u) + degq(v) >
|G| — 1. Then G has a Hamilton path if and only if G + uv has a Hamilton
path.

The next theorem is a generalization of Theorem 1.

Theorem 3 (Win [7]) Let G be a connected graph and k > 2 be an integer.
If > csdegg(z) > |G| =1 for every independent set S of G with size k, then
G has a spanning k-tree.

The following theorem shows that if every pair of nonadjacent vertices of
a graph G satisfies the condition of our main Theorem 5 with n = 1, then GG
has a special spanning tree or a Hamilton cycle.

Theorem 4 (Broersma and Tuinstra [2]) Let k > 2 be an integer and
G be a connected graph. If every pair of nonadjacent vertices u and v of G
satisfies degg(u) +degq(v) > |G| —k+1, then G has either a Hamilton cycle
or an independence spanning tree with at most k end-vertices (leaves), where

a spanning tree is called independence if the set of end-vertices is independent
in G.

The next theorem is our main result.

Theorem 5 Let k > 2 and n > 1 be integers. Let G be an n-connected
graph, and u and v be a pair of nonadjacent vertices of G such that

degq(u) + deg(v) > |G| — 1 — (k — 2)n. (1)
Then G has a spanning k-tree if and only if G + uv has a spanning k-tree.

Notice that the above theorem is a generalization of Theorem 2 since a
Hamilton path is a spanning 2-tree, and that for the theorem with k = 2,
the connectivity n of a graph does not contribute to the lower bound of the
degree sum condition (1).



We conclude this section by showing that the lower bound of the degree
sum condition (1) is sharp. Let G be the graph shown in Figure 1, which
contains a complete graph K; of order ¢ and has (kK — 1)n + 1 independent
vertices including u that are adjacent to n vertices of K;. Moreover t is
sufficiently large, for example, t > 2n+1. It is clear that |G| = t+(k—1)n+1,
G is n-connected, and G + wv has a spanning k-tree. However G has no
spanning k-tree since only n vertices of K, are adjacent to (k — 1)n + 1
independent vertices of G. Furthermore, the two nonadjacent vertices u and
v satisfy

degq(u) + degg(v) = |G| — 2 — (k — 2)n.

Therefore the condition (1) in Theorem 5 is sharp.

(k-D)n+1

Figure 1: G 4 uv has a spanning k-tree but not G. K; denotes the complete
graph of order ¢t with t > 2n + 1.

2 Proof of Theorem 5

Let a and b be two nonadjacent vertices of GG that satisfy
deg(a) + degn(b) > |G| — 1 — (k — 2)n. (2)

We prove that if G 4 ab has a spanning k-tree, then G also has a spanning
k-tree.

Suppose that G + ab has a spanning k-tree T'. If ab ¢ E(T'), then T is
the desired spanning k-tree of GG, and so we may assume ab € E(T). Let T,
and Ty be the components of T"— ab that contain a and b, respectively. We
regard T, and T}, as rooted trees with root a and b, respectively (see Figure 2).
Hence for every vertex x € V(T,) — {a}, a child 7 of z in T, is defined,



that is, ™ is a vertex of T, adjacent to x such that z lies on the path in T,
connecting 7 and a. So x has deg;(x) — 1 children, and the set of children
of x is denoted by Np(x)*. Similarly, for every vertex y € V(T,) — {b}, a
child y* and the set Np(y)™ of children of y in 7, with root b are defined.
Moreover, we briefly denote V (7,) and V(7}) by V, and V,, respectively.

Hereafter we assume that GG has no spanning k-tree, and derive a contra-
diction. Let

NG(a) N ‘/b = {bh e 7b7‘}7

Ne(b) NV, ={a1, -+ ,as} (see Figure 2).
It might be occurred that Ng(a) NV, = 0 and Ng(b) NV, = 0. Note that
b ¢ Ng(a) NV, and a € Ng(b) NV,. If Ng(a) NV, # 0 and degy(b;) < k for

some 7, then T"— ab + ab; is a spanning k-tree of GG, a contradiction. Hence
the following holds.

degp(b;)) =k forevery 1<i<r and
degr(a;) =k forevery 1<j<s. (3)

If a and a certain aj are adjacent in G, then G has a spanning k-tree
T —ab— ajaj + ba; + aaj, a contradiction. Hence the following holds.

aa) ¢ E(G) forevery af € Np(a;)™, 1<j<s, and
b ¢ E(G) for every b € Np(b)t, 1<i<r. (4)

We consider the following two cases.
Case 1. r+ s <nlO

Since G is n-connected, G has n internally disjoint a-b paths. Hence if
r+s < n, then n— (r+s) paths of the n internally disjoint a-b paths contain
n — (r + s) independent edges joining V, to Vj,. These independent edges are
represented by

T1Y1, T2Y2, - - 7Ityt€E(G)) t:n—(r—l—s) 217

r; €V, —{a}, vyieV,—{b} forall 1<i<t. (see Figure 2)
Then the following three claims hold.
Claim 1. For every 1 <i <t, degp(z;) = k or degp(y;) = k.

If degy(x;) < k and degp(y;) < k for some 1 < i < ¢, then G has a
spanning k-tree T' — ab + x;y;, a contradiction. Thus this claim holds.



G+ab

Figure 2: G + ab has a spanning k-tree T" containing ab.

Claim 2. If deg,(y;) < k, then az; ¢ E(G) for all xj € Np(z;)™. Similarly,
if degy(x;) <k, then by ¢ E(G) for all y € Np(y;)".

Assume that degy(y;) < k and az] € E(G) for some z;. Then T —
ab — xzx;r + x;9; + ax;’ is a spanning k-tree of G, a contradiction. Hence

i

ar; ¢ E(G) for all z} € Np(x;)*. By the same argument, the latter also
holds.

Claim 3. For every 1 < i <t, either no child of x; is adjacent to a in G or
no child of y; is adjacent to b in G.

Assume that a child z; of z; is adjacent to a and a child y;" of y; is
adjacent to b in G for some i. Then G has a spanning k-tree T'— ab — z;x; —
vy + ziy; + axl + by, a contradiction. Hence the claim holds.

Let «, # and v be the numbers of i € {1,2,... ,t} that satisfy the follow-
ing (i), (ii) and (iii), respectively.

(i) degp(z;)) =k and deg,(y;) <
(ii) degp(z;) <k and degy(y;) =

k,
k,
(iii) degp(z;) =k and degy(y;) = k.

By Claim 1, t = a + § + 7. Then by Claims 2 and 3 and by (3), (4),



t=a+ pB+~vand n =r+ s+ t, we obtain

degg(a) + degg(b) = [No(a) N V| + [No(a) N Vi
+ [Ne(b) N Vol + [Na(b) NV
<r+ |V —-1=(k—1)s— (k-1
+s+|Vo| =1 —=(k—1)r—(k—1)8—(k—1)y
Vil [Vil =2 (k= 2)(r +5) — (k — D(a+ 6 +7)
= |G| —-2—(k—=2)(r+s+t)—t
<G =2 = (k—2)n.

This contradicts the condition (2). Therefore the proof is complete in
this case.

Case 2. r+s>nl
By (3) and (4), we obtain
degg(a) + degg(b) = |Na(a) N Vi| + [Ne(a) N Vol
+ |Ng(b) N Vo] + [Na(b) NV
<74 Vol =1 —=(k=1)s
+s+ V| —1—(k—1)r
< |G| -2 - (k—2)n.

Again, we derive a contradiction. Consequently the theorem is proved.
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