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Abstract

For a set S of connected graphs, a spanning subgraph F of a graph is called an S-
factor if every component of F is isomorphic to a member of S. It was recently shown
that every 2-connected cubic graph has a {Cn|n ≥ 4}-factor and a {Pn|n ≥ 6}-
factor, where Cn and Pn denote the cycle and the path of order n, respectively
(Kawarabayashi et al., J. Graph Theory, Vol. 39 (2002) 188–193). In this paper,
we show that every connected cubic bipartite graph has a {Cn|n ≥ 6}-factor, and
has a {Pn|n ≥ 8}-factor if its order is at least 8.
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1 Introduction

We consider finite graphs without loops or multiple edges. A 3-regular graph is called a
cubic graph. We denote by Pn and Cn the path and the cycle of order n, respectively. For
a set S of connected graphs, a spanning subgraph F of a graph G is called an S-factor of G
if every component of F is isomorphic to one of members in S. Then a {Cn|n ≥ 3}-factor
is nothing but a 2-factor, which is a spanning 2-regular subgraph.

In this paper we consider cycle-factors and path-factors of cubic graphs, whose com-
ponents are cycles and paths, respectively. Notice that in a cubic graph, the edge-
connectivity is equal to the connectivity. We begin with some known results on these
factors.

Theorem 1 (Petersen [5]) Every 2-connected cubic graph has a {Cn|n ≥ 3}-factor.
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Kaneko found a criterion for a graph to have a {Pn|n ≥ 3}-factor, and obtained the
following theorem as its corollary. Note that a short proof of Kaneko’s theorem can be
found in [3].

Theorem 2 (Kaneko [2]) Every connected cubic graph has a {Pn|n ≥ 3}-factor.
Recently Kawarabayashi et al [4] showed the next theorem.

Theorem 3 [4] (i) Every 2-connected cubic graph has a {Cn|n ≥ 4}-factor.
(ii) Every 2-connected cubic graph of order at least six has a {Pn|n ≥ 6}-factor.

In this paper we shall prove the following theorem.

Theorem 4 (i) Every connected cubic bipartite graph has a {Cn|n ≥ 6}-factor.
(ii) Every connected cubic bipartite graph of order at least eight has a {Pn|n ≥ 8}-factor.

We now give some remarks on the above Theorem 4. It follows immediately from
Theorem 4 that every connected cubic bipartite graph G of order at most 16 has a Hamil-
tonian path since G has a {Cn|n ≥ 6}-factor, which consists of at most two components,
and a graph consisting of two disjoint cycles and one edge joining them has a Hamilto-
nian path. It is not mentioned in [4] that the conclusion of Theorem 3 is best possible.
However, we can easily find 2-connected cubic graphs having no {Cn | n ≥ 5}-factors. An
example of such a cubic graph is given in Figure 1 (a), and it has many triangles. So we
might expect that a 2-connected triangle-free cubic graph has a {Cn | n ≥ 5}-factor. But
this is not true as shown in Figure 1 (b), which shows a 2-connected triangle-free cubic
graph having no {Cn | n ≥ 5}-factor. Moreover, Theorem 4 is sharp in the sense that
there exists a connected cubic bipartite graph having no {Cn | n ≥ 8}-factor as shown in
Figure 1 (c).

(a) (b) (c)

Figure 1: (a) A 2-connected cubic graph having no {Cn | n ≥ 5}-factor; (b) A 2-connected
triangle-free cubic graph having no {Cn | n ≥ 5}-factor; (c) A 2-connected cubic bipartite
graph having no {Cn | n ≥ 8}-factor.

However we have been unable to find a 3-connected cubic graph having no {Cn | n ≥
5}-factor or no {Pn | n ≥ 7}-factor. So we propose the following conjecture and problem.
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Conjecture 5 Every 3-connected cubic graph of order at least six has a {Cn|n ≥ 5}-
factor.

Problem 6 Determine the maximum integer k ≥ 6 for which every 3-connected (or 2-
connected) cubic graph of order at least f(k) has a {Pn|n ≥ k}-factor, where f(k) is a
suitable function of k.

We conclude this section with a conjecture on path-factors of 3-connected cubic graphs.

Conjecture 7 (Akiyama and Kano [1]) Every 3-connected cubic graph of order 3n has
a {P3}-factor.

2 Proof of Theorem 4

For a vertex v of a graph G, we denote by degG(v) the degree of v in G. For two disjoint
vertex subsets X and Y of V (G), we denote by eG(X, Y ) the number of edges of G joining
X to Y . We denote the order of G by |G|, which is equal to |V (G)|.

Lemma 8 Let r ≥ 2 be an integer. Then every connected r-regular bipartite graph is
2-edge connected. In particular, every connected cubic bipartite graph is 2-connected.

Proof. Let G be a connected r-regular bipartite graph with bipartition A ∪ B. Suppose
that G has an bridge e = uw ∈ E(G), u ∈ A, w ∈ B. Then for a component D of G− e
containing u but not w, we have

r|V (D) ∩ A| − 1 =
∑

x∈V (D)∩A

degD(x) =
∑

x∈V (D)∩B

degD(x) = r|V (D) ∩B|.

This is a contradiction. Hence G has no bridge, which implies that G is 2-edge connected.
�

We first prove (i) of Theorem 4.

Proof of (i). Let G be a connected cubic bipartite graph. We prove (i) by induction on
the order |G|. There exists only one connected cubic bipartite graph of order six, which
is K3,3, and it has a {C6}-factor. So we may assume |G| ≥ 8.

By Lemma 8, G is 2-connected, and so G has a 2-factor F by Theorem 1, which
is a {Cn|n ≥ 4}-factor. We may assume that F contains a component D isomorphic
to C4 since otherwise F is the desired {Cn|n ≥ 6}-factor. Let V (D) = {a, b, c, d}, and
as, bt, cu, dw be the edges of G−E(D) incident with V (D) (see Figure 2).

Since G−E(F ) is a 1-factor of G, {as, bt, cu, dw} is a set of independent edges, and so
s, t, u, w are all distinct vertices of G. Let H be the graph obtained from G by removing
the four vertices a, b, c, d and their incident edges, and by adding two new vertices x and
y together with five new edges sx, ux, ty, wy, xy (see Figure 2).
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Figure 2: Cubic graphs G and H ; Bold lines are edges of D.

Then H is a connected cubic bipartite graph, and |H | = |G| − 2. Hence H has a
{Cn|n ≥ 6}-factor FH by induction. We shall obtain the desired {Cn|n ≥ 6}-factor of G
from FH by considering the following two cases.

Case 1. A component of FH contains the edge xy.

In this case, without loss generality, we may assume that a component D of FH contains
xy, sx and yw by symmetry. Then FH − {sx, xy, yw}+ {sa, ab, bc, cd, dw} is the desired
{Cn|n ≥ 6}-factor of G.
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Figure 3: Cubic graphs G and H and their {Cn|n ≥ 6}-factors.

Case 2. No component of FH contains the edge xy.

In this case FH contains the four edges sx, xu, ty, yw. We first assume that these four
edges are contained in the same component D of FH . By symmetry, we may assume that
a cycle D passes through s, x, u and then t, y, w (see Figure 3). Then we can obtain the
desired {Cn|n ≥ 6}-factor from FH by removing the edges sx, xu, ty, yw and by adding
the edges sa, ab, bt, uc, cd, dw as shown in Figure 3.

Next assume that the four edges sx, xu, ty, yw are contained in two distinct compo-
nents D1 and D2 of FH . In this case we can obtain the desired {Cn|n ≥ 6}-factor of
G from FH by removing sx, xu, ty, yw and by adding sa, ab, bt, wd, dc, cu. Consequently
Statement (i) of Theorem 4 is proved. �

Statement (ii) of Theorem 4 follows immediately from the next Lemma 9 and the
statement (i) of Theorem 4. It is shown in [4] that if a 2-connected cubic graph of order
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at least six has a {Cn|n ≥ 4}-factor, then it has a {Pn|n ≥ 6}-factor. This statement can
be generalized as the following Lemma 9 without changing the proof.

Lemma 9 ([4]) Let k ≥ 3 be an integer. If a 2-connected cubic graph G of order at least
k + 2 has a {Cn|n ≥ k}-factor, then G has a {Pn|n ≥ k + 2}-factor.

References

[1] J. Akiyama and M. Kano, Path factors of a graph. Graphs and applications (Boulder,
Colo., 1982), 1–21, Wiley-Intersci. Publ., Wiley, New York, 1985.

[2] A. Kaneko, A necessary and sufficient condition for the existence of a path factor
every component of which is a path of length at least two. J. Combin. Theory Ser. B
88 (2003), 195–218.

[3] M. Kano, G.Y. Katona, Z. Kiraly, Packing paths of length at least two. Discrete Math.
283 (2004), 129–135.

[4] K. Kawarabayashi, H. Matsuda, Y. Oda and K. Ota, Path factors in cubic graphs. J.
Graph Theory 39 (2002), 188–193.
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