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Abstract

A new construction of visual cryptography scheme (VCS) with dihedral
group access structure for two shares and many secret images is proposed.
Let D2n be a dihedral group of order 2n, and let {Image(τ) | τ ∈ D2n} be
2n secret images corresponding to D2n. In a VCS with dihedral group access
structure, two shares (two transparencies) A and B are constructed so that
for any element τ of D2n, A and τ(B) reconstruct the secret image Image(τ).
This new VCS is perfect and has contrast 1/(6n2).

Keywords: visual cryptography, VCS, visual secret sharing, VSS, diheadral
group, many secret images.

1 Introduction

A visual cryptography scheme (VCS), which was proposed by Shamir and Naor [5]
([4]), is a method of encoding a secret image into some shares, which are usually
printed on transparencies. In k-out-of-n VCS, the secret image is encoded into n
shares. If any k set of n shares are stacked together, then the original secret image
is reconstructed, but any set of shares less than k does not leak any information
about the secret image.

Droste [1] introduced the following new VCS and gave its construction. Let F
be a family of non-empty subsets of {1, 2, . . . , n}, and {Image(A) | A ∈ F} be a set
of |F| different secret images. Then we can make n shares S(1), S(2), . . . , S(n) so
that for any element A ∈ F , a stack of the shares in {S(i) | i ∈ A} reconstructs the
secret image Image(A), and we cannot get any information on Image(B) from the
set of transparencies if B �⊆ A. This kind of VCS for many secret images has been
studied in some papers including [3], [6], [2].

In this paper we consider a VCS with dihedral group access structure, which is
defined below, and give its construction. Let

D2n = {1, α, . . . , αn−1, β, βα, . . . , βαn−1}
be a dihedral group of order 2n, where α denotes a rotation with angle 2π/n and
β denotes a horizontal reversion. Let {Image(τ) | τ ∈ D2n} be a set of 2n secret
images, each of which corresponds to an element of D2n and is comprised of black
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and white pixels. Then two shares A and B, which are printed on transparencies,
are constructed so that for any element τ ∈ D2n, by staking A and τ(B), the
secret image Image(τ) is obtained (see Figure 1). This VCS is called a VCS with
dihedral group access structure for two shares and 2n secret images. We give a new
construction of this perfect VCS with contrast 1/(6n2), where a perfect VCS means
that a black pixel of a secret image is reconstructed into a pure black region, while
a white pixel is translated into a region consisting of white and black subpixels.

α(B)

β(B)

α2(B)B α3(B)

A

βα2(B)βα(B) βα3(B)

Figure 1: Two shares A and B of VCS with D8 access structure.

This paper is organized as follows: In Sect. 2, a construction of a VCS with D2n

access structure is given, but it has a contrast 1/(8n2). In Sect. 3, we give a revised
construction of a perfect VCS with reverse access structure, which is a VCS with
{1, β} access structure. In Sect. 4, by using the construction given in Sect. 3 we
obtain an improved construction of a perfect VCS with D2n access structure, whose
contrast is 1/(6n2). In appendix, an example of the improved VCS with D4 access
structure is given.

2 A construction of VCS with dihedral group ac-

cess structure

In this section we give a construction of a VCS with dihedral group D2n access
structure for two shares and 2n secret images. It has contrast 1/(8n2) though an
improved VCS given latter has contrast 1/(6n2). Let D2n be a dihedral group
defined in Section 1, which is generated by the rotation α with angle 2π/n and the
horizontally reversion β. Let A and B be two shares, and let {Image(τ) | τ ∈ D2n}
be a set of 2n distinct secret images, that is, given 2n secret images are assigned to
the elements of D2n.

We first define two 2× 2 matrices R1 and R2, which are randomly chosen from
the following matrices according to the color of a pixel in an image.

R1 ∈
{ [

0 1
1 0

]
,

[
1 0
0 1

] }
, R2 ∈

{ [
0 1
0 1

]
,

[
1 0
1 0

] }
.
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Let x and y be pixels of the shares A and B, respectively, such that x and y
are in the same position when we stack A and B. Then {τ(x) | τ ∈ D2n} and
{τ(y) | τ ∈ D2n} are the sets of 2n pixels of A and B, respectively, such that they
have the same position in some A+ τ(B), τ ∈ D2n (Figures 2, 3). Notice that in the
following figures, every pixel and subpixel are rectangular, but this condition is not
necessary. Actually for some VCS with D2n access structure, triangles and other
figures can be used.

x

βα(x) α(x)

β(x)

=
S(α) 

S(1)

S(βα) 

S(β) 

y

βα(y) α(y)

β(y)

Figure 2: A construction of VCS with D4 access structure, where x and y denote
pixels and are split into 16 subregions each.

x

α(x)

α2(x)

βα(x)

β(x)

βα2(x)

Figure 3: A construction of VCS with D6 access structure.

Each pixel of A and B is first split into 4n2 subregions, and latter each of these
subregions is split into two subpixels, and so finally original pixel is split into 8n2

subpixels. The dihedral group D2n acts on the set of subregions of {τ(x) | τ ∈ D2n},
which contains 2n · 4n2 subregions. Every orbit of this permutation has length 2n,
and there are 4n2 orbits. We divide these 4n2 orbits into 2n disjoints subsets, each
of which contains 2n orbits, and label them {S(τ) | τ ∈ D2n}.

Example 1: Our construction of VCS with D4 access structure, where D4 =
{1, α, β, βα}, will be given. In Figure 4, (1) denotes the set of 2n · 4n2 = 16 · 22

subregions, which consists of 4·22 orbits, and each orbit contains four subregions. We
mark some subregions with some symbols to emphasis its orbit. Using this example,
we explain the rule of determining the color of each subpixel. In order to do so
easily, we rearrange all the subregions so that each orbit consists of the subregions
lying on the same position (see (2)). Moreover, these orbits are partitioned into
four subsets S(1), S(α), S(β), S(βα). Of course, there is a bijection between the
subregions of (1) and those of (2), and thus if we determine the colors of subregions
of (2), the colors of original subregions are determined. Let τ ∈ D4. For any
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element ρ ∈ D4, choose one subregion sub(ρ, x, τ) from ρ(x) ∩ S(τ) so that the
four subregions sub(ρ, x, τ), ρ ∈ {1, α, β, βα}, are contained in four distinct orbits of
S(τ). Furthermore, for any fixed ρ, we can choose sub(ρ, x, τ) so that it is placed at
the same position in every S(τ), τ ∈ D4 (see (2)).

For a pixel y of B, which is placed at the same position as x of A, we first split
it into 16 ·22 subregions. Then for any γ, ρ ∈ D4, choose a subpixel sub(ρ, y, γ) from
ρ(y) ∩ S(γ) of B that is placed at the same positions as

sub(γ−1ρ, x, γ) of A (see (3)).

Thus, by τ ∈ D4, the subregion sub(ρ, y, τ) in B is moved to the following subregion
in τ(B):

sub(ττ−1ρ, x, τ) = sub(ρ, x, τ),

which is in the same position of sub(ρ, x, τ) in A. Namely, the subregions sub(ρ, y,
τ) in B and sub(ρ, x, τ) in A are placed at the same position in A + τ(B), and so
they are used to make a color of the pixel ρ(z) of Image(τ), which is reconstructed
by A + τ(B).

Consider the secret image Image(τ). We determine the basis matrix of sub(ρ,
x, τ) and sub(ρ, y, τ), ρ ∈ D2n, by using matrices R1 and R2 as follows according to
the color of a pixel ρ(z) of Image(τ), which is placed at the same position as ρ(x).

[
sub(ρ, x, τ)
sub(ρ, y, τ)

]
=

{
R1 if ρ(z) is black,
R2 if ρ(z) is white,

and all the non-chosen subregions are [1, 1],

Notice that all the subregions are split into two subpixels each. We repeat the same
procedure for every non-chosen pixel z ∈ Image(τ) and for all secret images until
the colors of all the subpixels of shares A and B are determined. By the definition of
sub(ρ, x, τ) and sub(ρ, y, γ), when we stack A and τ(B), Image(τ) is reconstructed
and its contrast is 1/32 since each pixel is finally split into 32 subpixels.

Now we explain our construction of VCS with general dihedral group D2n access
structure. Each pixel of shares A and B is split into 4n2 subregions, and for every
ρ ∈ D2n, one subregion sub(ρ, x, γ) is chosen from ρ(x) ∩ S(γ) of A as Example 1,
and sub(ρ, y, γ) is the subregion placed at the position as sub(τ−1ρ, x, γ). For any
image Image(τ) and any element ρ ∈ D2n, let ρ(z) be a pixel of Image(τ), and
let ρ(x) and ρ(y) be the pixels of A and B being in the same position of ρ(z). We
determine sub(ρ, x, τ) and sub(ρ, y, τ) as

[
sub(ρ, x, τ)
sub(ρ, y, τ)

]
=

{
R1 if ρ(z) is black,
R2 if ρ(z) is white,

and all the non-chosen subregions are [1, 1],

where all the subregions are split into two subpixels each.
By the definition of sub(ρ, x, τ) and sub(ρ, y, τ), the color of the region ρ(z) in

A + τ(B) is determined by sub(ρ, x, τ) and τ(sub(ρ, y, τ)), and thus Image(τ) is
reconstructed. It is easy to see that its contrast is 1/(8n2) and we cannot get any

4



= R1 or R2

=

S(α)

S(1) 

S(βα) 

S(β) 

y βα(y)α(y)β(y)

x βα(x)α(x)β(x)

x βα(x)α(x)β(x)

Rearrage the subregions of  shares A and B  so that 

each orbit consists of subregions at the same position.

y*

=y*=sub(ρ,y,τ)

x*

=x*=sub(ρ,x,τ)

(1)

(2)

(3)

[  ]

sub(1,x,1)
sub(βα,x,1)

{     }, {    }, {    }, ...

are orbits of  D4.

sub(1,x,β)
sub(βα,x,β)

Each subregion is

split into two subpixels.

sub(1,y,α)

=sub(α-1,x,α)

=sub(α,x,α)

sub(βα,y,α)=sub(α-1βα,x,α)=sub(β,x,α)

sub(1,x,βα) sub(βα,x,βα)

sub(βα,x,α)

sub(1,y,β)

=sub(β-1,x,β)

=sub(β,x,β)

S(τ) ρ(x)

Figure 4: A construction of VCS with D4 access structure. Gray squares denote
sub(ρ, x, τ) of A and ρ(ρ, y, τ) of B.

information about the secret images from one of {A, B} since (i) each sub(ρ, x, τ) in
A is [0, 1], [1, 0] or [1, 1], (ii) [1, 1] means that the color of the pixel is determined by
other subregion, and (iii) there is no difference between white pixel and black pixel
of the image; and the same conditions hold for B. Consequently we can construct a
VCS with dihedral group access structure.

3 A revised construction of VCS with reverse ac-

cess structure

We give a new construction of VCS with reverse access structure, which will play
important role in the next section. Our method of constructing VCS with reverse
access structure is different from the method given in the previous section. The
contrast of our construction is 1/6, but that of the preceding construction is 1/8.
Moreover, it will be shown that the construction given here is best possible in some
sense. Namely, we will prove in the appendex that it is impossible to construct a

5



perfect VCS with reverse access structure with contrast 1/5 or more.
For a share X, we briefly denote by X̃ the share β(X), which is obtained by

horizontally reversing X (Figures 5, 6). Suppose that two distinct secret images
Image1 and Image2 are given. We want to encode these two secret images into two
shares A and B so that we can reconstruct Image1 and Image2 by stacking A and
B, and by A and B̃, respectively (see Figures 5, 6). We call this VCS a VCS with
reverse access structure.

A1

A

A2 B1

B

B2 B2

B

B1
~ ~

~

Figure 5: A VCS with reverse access structure.

We now explain our construction of VCS with reverse access structure. Let
A1 and A2 be two pixels of A, and B1 and B2 be the two pixels of B such that
Ai covers Bi in orderly stacking, and Ai covers B̃j in reversely stacking, where
{i, j} = {1, 2} (Figures 5, 6). We split each of these pixels into six subpixels. Then
Ai and Bi are expressed as Ai = (xij) and Bi = (yij), where xij and yij denote
subpixels. For convenience, we also regard Ai = (xij) and Bi = (yij) as their basis
matrices, that is, we assume that xij and yij express subpixels and their colors
xij , yij ∈ {0, 1} = {white, black}. Let us write Ai = (xij) and Bi = (yij) as Figure 6,
where the suffixes of A2 and B2 are reversed.

x12

x13 x14

x15 x16

x11 x22

x23x24

x25x26

x21 y12

y13 y14

y15 y16

y11 y22

y23y24

y25y26

y21 y12

y13y14

y15y16

y11y22

y23 y24

y25 y26

y21

A1 A2 B1B1 B2B2 ~~

Figure 6: Subpixels of A, B, and B̃.

If we orderly stack A and B, then the subpixels of the resulting region are

xij + yij for 1 ≤ i ≤ 2, 1 ≤ j ≤ 6,

where + denotes OR of two elements, and if we reverse B and stack it and A
together, then the the subpixels of the resulting region are

xij + yi′j , where {i, i′} = {1, 2}, 1 ≤ j ≤ 6.

The pairs of this operation ” + ” between elements of Ai and those of Bi or B̃i′ are
represented by the diagram given in Figure 7. Thus, for example, if the pixel of
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Image1 placed at A1 is black, then the basis matrices should satisfy

x11 + y11 = x12 + y12 = x13 + y13

= x14 + y14 = x15 + y15 = x16 + y16 = 1

because our VCS is perfect. Similarly, if the pixel of Image2 placed at A1 is white,
then at least one of the following six elements is equal to 0 because the contrast of
our VCS is 1/6.

x11 + y21, x12 + y22, x13 + y23,

x14 + y24, x15 + y25, x16 + y26.

x11

x12

x21

x22

y11

y12

y21

y22

x13

x14

x23

x24

y13

y14

y23

y24

x15

x16

x25

x26

y15

y16

y25

y26

A1 A2B1 B2

B1

B2
~

A2

A1

+

+

+

+

~

Figure 7: The diagram representing the pairs of ” + ”.

We now define the three 2× 2 matrices as follows:

M1 =

[
0 0
1 1

]
, M2 =

[
0 1
1 1

]
, and M3 =

[
1 1
1 0

]
(1)

Then we tentatively define the two basis matrices A1 and A2 as follows:

[A1, A2]=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11 x21

x12 x22

x13 x23

x14 x24

x15 x25

x16 x26

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎣ M1

M2
M3

⎤
⎥⎦=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
1 1
0 1
1 1
1 1
1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

We next define the matrices B1 and B2 according to the set of colors {A1 + B1,
A2 + B̃1, A2 + B2, A1 + B̃2}. For example, if their colors are

A1 + B1 = black, A2 + B̃1 = black,

A2 + B2 = white, A1 + B̃2 = black, (3)
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then by considering Figure 7, we define

[B1, B2]=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y11 y21

y12 y22

y13 y23

y14 y24

y15 y25

y16 y26

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
0 1
1 1
0 0
1 1
1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎣

M2∗

M1∗

M3

⎤
⎥⎦ ,

where Mi∗ is obtained from Mi only by exchanging the first and the second rows.
Then it is clear that these matrices satisfy the color condition (3).

In fact, when we distribute subpixels, we randomly permute the six rows of
(A1, A2) and (B1, B2) simultaneously. Thus there are no difference between the
above two matrices [A1, A2] and [B1, B2].

We shall show that for any set of colors, we can define the basis matrices B1

and B2 that satisfy the given color condition and posses the following properties: (i)
(B1, B2) consists of the three matrices choosing one from each {M1, M1∗}, {M2, M2∗}, {M3, M3∗};
(ii) the VCS is perfect; and (iii) the VCS has contrast 1/6. By the property (i) and
symmetry, our construction guarantees that the VCS is secure, that is, we cannot
get any information about secret images from one of {(A1, A2), (B1, B2)}.

We prove that for any set of colors, we can always define the matrices (B1, B2)
possessing the above properties. We consider the following three cases.

Case 1. Two consecutive colors in (A1 + B1, A2 + B̃1, A2 + B2, A1 + B̃2) are
white.

Suppose first A1 + B1 = A2 + B̃1 = white. In this case we define the first and
second rows of (B1, B2) as follows:

[B1, B2] ⊃
[

y11 y21

y12 y22

]
=

[
0 1
1 1

]
=M2,

Then A1 + B1 = A2 + B̃1 = white, and the other colors A2 + B2 and A1 + B̃2 are
determined by the remaining rows of (B1, B2). We define the remaining rows of
(B1, B2) as follows according to (A2 +B2, A1 + B̃2) = (black, black), (black, white),
(white, black), (white, white).

[B1, B2] ⊃

⎡
⎢⎢⎢⎣

y13 y23

y14 y24

y15 y25

y16 y26

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 1∗

0 0
1 0
1 1∗

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

0 0∗

1 1
1 0
1 1∗

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

1 1∗

0 0
1 1
1 0∗

⎤
⎥⎥⎥⎦ , or

⎡
⎢⎢⎢⎣

0 0∗

1 1
1 1
1 0∗

⎤
⎥⎥⎥⎦ ,
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where only 0∗ and 1∗ guarantee the desired colors, and the remaining elements are
determined so that two matrices coming from each of {M1, M1∗} and {M3, M3∗}
appear.

By the symmetry of the diagram in Figure 7, we can similarly construct the
desired basis matrices (A1, A2, B1, B2) in the other cases. For example, in the case
of A2 + B̃1 = A2 + B2 = white, A1 + B̃2 = X, and A1 + B1 = Y , where X, Y ∈
{white, black}, we first define B̃1 and B̃2 as (2) then define the remaining matrix
A2 and A1, which correspond to B1 and B2 in the above construction. Hence in this
case we obtain the desired basis matrices A1, A2, B1, B2.

Case 2. Two consecutive colors in (A1 + B1, A2 + B̃1, A2 + B2, A1 + B̃2) are
(white, black).

Suppose first A1 + B1 = white and A2 + B̃1 = black. We define (A1, A2) by (2),
and B1 by

B1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

y11

y12

y13

y14

y15

y16

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
y12

0
y14

y15

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then A1 + B1 = white and A2 + B̃1 = black. We can easily determined the matrix
B2 and the remaining elements y12, y14, y15 of B1 so that the desired colors of A2+B2

and A1 + B̃2 are reconstructed and the three matrices M1, M2 and M3 appear.
By the symmetry of the diagram in Figure 7, we can similarly construct the

desired basis matrices (A1, A2, B1, B2) in the other cases.

Case 3. A1 + B1 = A2 + B̃1 = A2 + B2 = A1 + B̃2 = black.

The (A1, A2) of (2) and the following (B1, B2) have the desired colors and prop-
erties.

(B1, B2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
0 0
1 0
1 1
0 1
1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Since Cases 1,2,3 covers all the cases, the proof is complete. Therefore we can
construct a perfect VCS with reverse access structure with contrast 1/6.

4 An improved construction of VCS with dihedral

group access structure

We present an improved construction of VCS with dihedral group access structure for
two shares and 2n secret images by applying the VCS with reverse access structure
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given in the previous section. Let D2n be the dihedral group defined in the preceding
sections. In our construction the contrast is 1/(6n2).

First let Ω = {(1, β), (α, βα), . . . , (αn−1, βαn−1)} be the set of pairs of elements
in D2n. We construct a VCS in such a way that we apply the construction of VCS
with reverse access structure to two secret images Image(ρ) and Image(βρ) and
some regions of two shares A and ρ(B) for every (ρ, βρ) ∈ Ω. Namely, we split each
pixel of shares A and B into 2n subregions, then for every (ρ, βρ) ∈ Ω, we encode
two images Image(ρ) and Image(βρ) into one subregion of every pixel of A and B so
that A+ρ(B) and A+βρ(B) reconstruct Image(ρ) and Image(βρ), respectively. We
begin with an example of this construction before giving a construction in general
case.

Example 2: We construct a VCS with D4 access structure. Let D4={1, α, β,
βα}. Then Ω = {(1, β), (α, βα)}. Let x and y be pixels of the shares A and B,
respectively, such that x and y are in the same position when we stack A and B
(Figure 8).

x

βα(x) α(x)

β(x) y

A B

=

sub(1,x) β(sub(1,x))

β(sub(4,x))

sub(3,x)

β(sub(2,x))

sub(1,y)
sub(4,y)

β(sub(3,y))

β(sub(3,x))

sub(4,x)
sub(2,x)

β(sub(1,y))

sub(2,y)β(sub(2,y))

β(sub(4,y))

sub(3,y)

 = 

a pixel
subpixels

1,1
1,1
1,1[ ]

βα(y) α(y)

β(y)

Figure 8: A construction of VCS with D4 access structure. Every pixel is split
into four subregions, and each subregion is split into six subpixels. Gray subregions
reconstruct Image(1) and Image(β), and regions with cross reconstruct Image(α)
and Image(βα).

We split every pixel in {ρ(x) | ρ ∈ D4} of A into four subregions. Then D4

acts on the set of these subregions, and every orbit of this permutation has length
four. We choose two subregions from each orbit such that they are transformed each
other by β and exactly two subregions are chosen from each pixel, and denote these
subregions by sub(i, x), β(sub(i, x)) (1 ≤ i ≤ 4) (Figure 8). We also choose eight
subregions sub(i, y), β(sub(i, y)) (1 ≤ i ≤ 4) that are placed at the same positions
as

sub(1, x), β(sub(1, x)),

sub(2, x), β(sub(2, x)),

α−1(sub(3, x)), α−1β(sub(3, x)),
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α−1(sub(4, x)), α−1β(sub(4, x)), respectively.

By using the construction of VCS with reverse access structure, we can encode
two secret images Image(1) and Image(β) into the eight subregions

sub(1, x), β(sub(1, x)), sub(2, x), β(sub(2, x)) of A

and sub(1, y), β(sub(1, y)), sub(2, y), β(sub(2, y)) of B.

Of course, we split each subregion into six subpixels. Next we encode two secret
images Image(α) and Image(βα) into eight subregions

sub(3, x), β(sub(3, x)), sub(4, x), β(sub(4, x)) of A

and sub(3, y), β(sub(3, y)), sub(4, y), β(sub(4, y)) of B.

Then, for example, we can reconstruct Image(1) by stacking A and B, and Image(α)
by stacking A and α(B). The contrast of this VCS is 1/24 = 1/(6 · 22).

α(x)

α2(x)

α3(x)

βα2(x)

βα3(x)

β(x)

βα(x)

x

x
A pixel 

42 subregions

A

Figure 9: A construction of VCS with D8 access structure.

We can similarly construct a VCS with general dihedral group D2n access struc-
ture as Example 2. We first consider the share A. We split every pixel of A into n2

subregions. Then D2n acts on the set of subregions of pixels in {ρ(x) | ρ ∈ D2n},
where every orbit has length 2n and there are n2 orbits (Figures 9, 10). We divide
these n2 orbits into n disjoints subsets, each of which contains n orbits, and label
them {T (j) | 0 ≤ j ≤ n− 1} (Figure 10). For every αk (0 ≤ k ≤ n− 1), we choose
the n subregions of T (k)∩αk(x), and the n subregions of T (k)∩βαk(x) (Figure 10).

We next consider the share B. First split every pixel of B into n2 subregions.
For every 0 ≤ h ≤ n− 1, choose the n subregions from αh(y) that are placed at the
same positions as the following subregions of A.

{α−j(sub(h, j, x)) in A | the (j + 1)-th chosen subregion sub(h, j, x)

of αj+h(x), j = 0, 1, . . . , n− 1} ,

where the indexes of T (h + j) are expressed module 2n.
Similarly, we next choose the n subregions from βαh(y) that are placed at the

same positions as the following subregions in A.

{α−j(sub(h, j, x)) in A | the (j + 1)-th chosen subregion sub(h, j, x)

of αjβαh(x) = βαh−j(x), j = 0, 1, . . . , n− 1} .

11



For every 0 ≤ k ≤ n−1, the two secret images Image(αk) and Image(βαk) cor-
responding to (αk, βαk) ∈ Ω are encoded into the above (k+1)-th chosen subregions
of A and B by using the construction of VCS with reverse access structure given in
Section 4. Namely, we can reconstruct Image(αk) by stacking A and αk(B), and
Image(βαk) by A and βαk(B). The first reconstruction follows from the fact that
when we stack A and αk(B), for every 0 ≤ h ≤ n−1, the (k+1)-th chosen subregion
of αk+h(x) of A is sub(h, k, x), and the subregions of B corresponding this subregion
is placed at the (k + 1)-th subregion of αh(y) in B. Hence they are matched in
A+αk(B). Similarly, the subregion of βαh(x) of A and its corresponding subregion
of B are matched.

β(y)

α(y)βα(y)

βα2(x)

α3(y) βα3(y)

y

B
α2(x)

β(x)

α(x)βα(x)

α2(x)βα2(x)

α3(x) βα3(x)

x

A

T(0) T(1)

T(2)

T(3) T(0)
T(1)

T(2) T(3)

Figure 10: A construction of VCS with D8 access structure. Gray rectangles denote
the chosen subregions of A and B.

The similar situation holds when we stack A and βαk(B), and so we can recon-
struct Image(βαk) by staking A and βαk(B).

Consequently, we can construct the desired perfect VCS with dihedral group D2n

access structure having contrast 1/(6n2).

5 Conclusions

In this paper, we consider constructions of perfect VCS with dihedral group D2n

access structure for two shares and 2n secret images. We first give a construction
by using orbits of a permutation group. Next we give a revised construction of VCS
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with reverse access structure, which is essentially different from the previous one.
Then by using this new method, we give an improved construction of perfect VCS
with dihedral group D2n access structure, whose contrast is 1/(6n2). It is difficult
to find a construction with higher contrast, and so it might be possible to show that
our new construction is best possible for some n.
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Appendix A: A proof of sharpness of improved VCS with
reverse access structure

We prove that it is impossible to construct a perfect VCS with reverse access
structure of contrast 1/5. It is easy to prove the non-existence of such a VCS with
higher contrast in the same way. We shall use the same notation of Section 3. Let

Ai = (xi1, xi2, xi3, xi4, xi5) and Bi = (yi1, yi2, yi3, yi4, yi5), i ∈ {1, 2}.

Then the colors of Ai +Bi and Ai + B̃i are determined by {xij +yij} and {xij +yi′j},
respectively, where {i, i′} = {1, 2} and 1 ≤ j ≤ 5. Because of security, the sets
{(x1j , x2j), 1 ≤ j ≤ 5} and {(y1j , y2j), 1 ≤ j ≤ 5} must consist of the same elements,
respectively, for any colors of {Ai+Bi, Ai+B̃i, i ∈ {1, 2}}. We consider the following
two cases. Case 1 (x1j , x2j) = (0, 0) for some j; and Case 2 neither (x1j , x2j) nor
(y1j, y2j) is (0, 0). Here we consider only Case 1 since Case 2 can be considered in a
similar way. Without loss of generality, we may assume that (x11, x21) = (0, 0).
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Consider the case that the colors of (A1 + B1, A2 + B̃1, A2 + B2, A1 + B̃2) are
(0, 1, 0, 1), where 1 = black and 0 = white. Then for some a, b ∈ {1, 2, 3, 4, 5}, a �= b,
we have

(x1ax1b) = (01), (y1ay1b) = (01), (x2ax2b) = (10), (y2ay2b) = (10).

Hence we may assume that {(x1jx2j), j = 1, 2, 3}= {(00), (01), (10)}. By considering
the case that the colors of (A1 + B1, A2 + B̃1, A2 + B2, A1 + B̃2) are (1, 1, 1, 1), we
have

(y11y12y13y14y15) = (11101), (y21y22y23y24y25) = (11110),

where (y14y15) = (y1ay1b) = (01) and (y24y25) = (y2ay2b) = (10). By considering the
case that the colors of (A1 + B1, A2 + B̃1, A2 + B2, A1 + B̃2) are (0, 0, 0, 0), we have

(x14x15) = (00), (x24x25) = (00).

Hence we may assume {(x1j , x2j), 1 ≤ j ≤ 5} ⊃ {(00), (00), (01), (10)}. Finally
again by considering the case that the colors of (A1 + B1, A2 + B̃1, A2 + B2, A1 +
B̃2) are (1, 1, 1, 1), we have {(y1j, y2j), 1 ≤ j ≤ 5} ⊃ {(11), (11), (11), (11)}, which
contradicts the above fact that (y1ay1b) = (01) and (y2ay2b) = (10). Consequently
the statement is proved.

Appendix B: An example of improved VCS with D4 access
structure

share A share B

Figure 11: An example of improved VCS with D4 access structure (shareA and
shareB).
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Secret Image 1 Secret Image β

Secret Image α  (A chinese character) Secret Image βα

Figure 12: An example of improved VCS with D4 access structure (reconstructed
images).
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