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Abstract

Let a, b, k, and m be positive integers such that 1 < a < band 2 < k <
(b+1—m)/a. Let G = (V(G), E(G)) be a graph of order |G|. Suppose that
|G| > (a+b)(k(a+b—1) —1)/b and |Ng(z1) U Ng(xz2) U --- U Ng(xg)| >
a|G|/(a + b) for every independent set {x1,z2,...,xr} C V(G). Then for any
subgraph H of G with m edges and 6(G — E(H)) > a, G has an [a, b]-factor F’
such that E(H)N E(F) = (). This result is best possible in some sense and it
is an extension of the result of H. Matsuda (Discrete Mathematics 224 (2000)
289-202).

1 Introduction

We consider finite undirected graphs without loops or multiple edges. Let G be a
graph with vertex set V(G) and edge set E(G). We denote by |G| the order of
G. For a vertex v of G, let deg(v) and Ng(v) denote the degree of v in G and the
neighborhood of v in G, respectively. Furthermore, 6(G) denotes the minimum degree
of G, and Ng(S) = U,cq Na(z) for S C V(G). We write Ng[v] for Ng(v) U {v}. For
two disjoint vertex subsets A and B of G, the number of edges of GG joining A to B
is denoted by eq(A, B). For a subset S C V(G), let G — S denote the subgraph of G
induced by V(G) — S.
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Let a and b be integers such that 1 < a < b. An [a, b]-factor of G is a spanning
subgraph F' of GG such that

a <degp(r) <b for all zeV(G).

Note that if @ = b, then an [a, b]-factor is a regular a-factor.

2 Background and Results
The following results on a k-factor are known.

Theorem 1 (Iida and Nishimura [1]) Let k& > 2 be an integer and let G be a
connected graph of order |G| such that |G| > 9%k — 1 —4+/2(k — 1)2 + 2, k|G| is even,
and §(G) > k. If G satisfies |Na(x) U Na(y)| > (|G| + k — 2)/2 for all non-adjacent
vertices x and y of G, then G has a k-factor.

Theorem 2 (Niessen [4]) Let G be a connected graph of order |G| and 6(G) > k >
2, where k is an integer with k|G| is even and |G| > 8k—T7. If|[Ng(z)UNg(y)| > |G|/2
for all non-adjacent vertices x and y of G, then G has a k-factor or G belongs to some
exceptional families.

One of the authors showed a neighborhood condition for the existence of an [a, b]-
factor.

Theorem 3 (Matsuda [5]) Let a and b be integers such that 1 < a < b and let G
be a graph of order |G| with |G| > 2(a+b)(a +b—1)/b and 6(G) > a. If

alG]|
>
|Na(x) U Na(y)| > b

for any two non-adjacent vertices x and y of G, then G has an [a, b]-factor.

The following theorem gurantees the existence of an [a, b]-factor which includes
some specified edges.

Theorem 4 (Matsuda [6]) Let a, b, m, and t be integers such that 1 < a < b and
2<t<[(b—m++1)/a]. Suppose that G is a graph of order |G| > ((a+ b)(t(a +b—
1) —1)+2m)/b and §(G) > a. Let H be any subgraph of G with |E(H)| =m. If

a|G| + 2m

|Ng(x1) U Ng(z2) U--- U Ng(x)| > p—

for every independent set {x1,xa,... ,x:} C V(G), then G has an |a, b]-factor includ-
g H.

In this paper, we prove the following two theorems for the existence of an [a, b]-
factor which excludes some specified edges.
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Theorem 5 Let a, b, m, and k be positive integers such that 1 < a <b and2 <k <
(a+b+1—m)/a. Let G be a graph with |G| > (a +b)((k+m)(a+b—1)—1)/b. If

alG]|

1
a+b (1)
for every independent set {x1,xa,..., 2} C V(G), then for any subgraph H of G

with m edges and 6(G — E(H)) > a, G has an [a,b|-factor F excluding H (i.e.
EH)NE(F)=0).

|Na(21) U Na(22) U - - U Ng(ap)| >

The condition (1) is best possible in the sense that we cannot replace a|G|/(a+b)

by a|G|/(a + b) — 1, which is shown in the following example: Let ¢ > 2m be a
sufficiently large integer. Consider the join of two graphs G = A + B, where A
consists of at — 2m isolated vertices and m independent edges, and B consists of
bt + 1 isolated vertices. Then it follows that |G| = |A| 4+ |B| = (a +b)t + 1 and

alG| alG|

> |N, U N, U---UN. =at > —— —

w1~ | Ne(@) UNe(z2) clz)| =at >
for a subset {1, x2,... ,2x} C B with 2 <k < (a+b+1—m)/a. However, G has
no [a, b]-factor excluding the m edges in A because b|A| < a|B|.

The next theorem corresponds to the case k = 1 of Theorem 5.

Theorem 6 Let a, b, and m be integers such that 1 < a < b and m > 1. Suppose
that G is a graph with §(G) > a|G|/(a+0b) and |G| > (a+b)((m+1)(a+b+1)—5)/b.
Then for any subgraph H of G with m edges, G has an |a, b]-factor excluding H.

3 Proofs of Theorem 5 and 6

For a vertex v and a vertex subset T" of G, for convenience, we write Nr(v) and Np[v]
for Ng(v)NT and Ng[v]NT, respectively. Our proofs of the theorems depend on the
following criterion.

Theorem 7 (Lam, Liu, Li and Shiu [2]) Let1 < a < b be integers, and let G be a
graph and H a subgraph of G. Then G has an |a, b]-factor F' such that E(H)NE(F) =
0 if and only if

bS]+ ) degg_s(x) —alT| =) degy(z) —en(S,T)

zeT zeT

for all disjoint subsets S and T of V(G).

Proof of Theorem 5. Suppose that G satisfies the assumption of the theorem, but
has no desired [a, b]-factor for some subgraph H with m edges and §(G — H) > a.
Then by Theorem 7, there exist two disjoint subsets S and 7" of V(G) such that

bS]+ (degg_g(x) — degy(x) + en(x, ) —a) < —1. (2)

zeT

We choose such subsets S and T so that |7'| is minimum.
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Claim 1 |S| > 1.

If S =0, then by (2) we obtain

12 3 (degg(e) — degy () — @) = Y (6(G — E(H)) —a) 20,

zeT zeT

which is a contradiction. |}

Claim 2 |T| > b+ 1.

Suppose that |T'| < b. Since |S|+degq_g(z)—degy(z) > dege_gy(z) > 0(G—E(H)) >
a for all x € T, it follows from (2) that

—1>0b|S|+ Z (degg_g(z) — degy(z) + en(z,S) — a)

zeT

> Z (IS| + degg_g(x) — degyy(x) + en(z, S) —a) > 0.

zeT

This is a contradiction. [}

Claim 3 deg,_g(z) —degy(z) + en(x,S) <a—1 foralxzeT.

Suppose that there exists a vertex u € T such that deg,_g(u) —degy(u) +en(u, S) >
a. Then the subsets S and T — {u} satisfy (2), which contradicts the choice of T
Hence the claim holds. [}

By Claim 3, we obtain
|Nr[z]| < degq_g(z) + 1 < degy(z) —en(x,S)+a forallz € T.

Now we obtain a set {x,zs,...,zx} of independent vertices of G as follows: First

define
by = min{degg_g(z) — degy («) +en(z, S) |z € T},

and choose z1 € T such that deg_g(z1) —degy (z1) +en(z1,5) = hy and degy(z1) —
er(r1,S) is minimum. Next, for i =2,--- |k, where k < (a+b+1—m)/a, we define

i—1

hi = min{degg_s(x) — degy(2) + en(z,S) | 2 € T — | Nrle)] },

J=1

and choose x; € T — U;;ll Nr[z;] such that degq_g(z;) — degy(z;) + en(xi, S) = h;
and degy(z;) + ey (x;,S) is minimum. Then we have hy < hy <--- < hy <a—1by



Claim 3 and we have Zle degy(z;) < m since |[E(H)| = m and {x1,2,... ,Tx} is
an independent set of G. Note that by Claim 3 and k < (a + b+ 1 —m)/a, we have

e

k—1 -1

k-1
U Vele]| < (degas(a) +1) < 3 (a+ degp(w:))
=1 =1 j=1
<alk—-1)+|EH)| <alk—1)+m<b+1<|T|.
Hence we can take an independent set {xy1, 2, ..., Tk}
By the condition of Theorem 5, the following inequalities hold:
UG | No(er) U Na(ea) U- -~ U Na(a)
x PR
arp = el ¢ (22 c(Tk

k
<) degg_s(w:) + 19|

=1
k

< Z(hz + degy (i) — en(x:, S)) + |5/,

i=1

which implies

a!GI

Z hi + degy (x;) — ep(x;, S)). (3)

Since |G| —|S| —|T| > 0 and a — hy, > 1, we obtain (|G| — |S|— |T|)(a —hx) >0
This inequality together with (2) gives us the following:

(IG] =S| = IT|)(a — hx)
> bS]+ (degy_g(x) — degy (x) + en(@, ) — a) + 1

zeT

> b|S]| +Zh \Np[zi]| + he(|T| — Z|NT [z]]) — a|T| +1
=1 i=1
k—1
= 0|8+ > (hi — h)|Nr[a)| + (hx — a)|T| + 1
i=1
k—1
> b|S|+ ) (hi — ha)(hi + 1 + deg () + (hx — a)|T| + 1
i=1
k
= 0[S+ ) (hi — ha)(hi + 1+ degyy (z:)) + (s — a)|T| + 1,
i=1
where h; — hy, < 0 and h; + 1 + degy (x;) > | N7[x;]|. Then it follows from the above
inequality that
k—1
0<(a—h)|G|—=(a+b—hg)|S| + Z(hk —hi)(h; + 1+ degy(x;)) — 1.  (4)

i=1



Substituting (3) into (4), we have

0<(a—hp)|G|—(a+b—hyg) (;l’fé - Z(hz + degy(x;) — en (s, S)))

+ ) (b — ha)(hi + 1+ degp () — 1

k
e
_ _a’+ ‘bhk _ ;mg —(a+b— 1 degy(w)hi — b — (@ + b) degyy (1)) — 1.

By the condition 2 < (a +b+ 1 —m)/a, we have m < b — a + 1 and hence a + b —
1 —degy(x;) > 2(a— 1) for each ¢ = 1,2,... , k. This together with the inequalities
hy < hy < -+ < hy < a—1of Claim 3 yields the fact h?—(a+b—1—degy (z;))h; attains
its minimum at h; = hy. Suppose that hy > 1. By |G| > (a+b)((k+m)(a+b—1)—1)/b,
we obtain

k

b|G]| 2
0< o bhk — ;(hz —(a+b—1—degy(x;)hi — hp — (a + b) degy(z;)) — 1
WGl
< T bhk — ;(hi —(a+b—1—degy(z;)hx — hi — (a+b)degy(z;)) — 1
bl :
_ 2
= —CH_bhk—khk+k(a+b)hk+(a+b—hk);deg,{(xi) -1
S Y N N
< a+bhk khi + k(a+b)hx + (a+b— hx)m — 1
2 blG]|
< —khi+ |k(a+b) ————m | hy+(a+bm—1
a+b

< —khi+(k—(a+bm+1)hy+ (a+b)m—1
= —(hx = 1) (kh + (a + b)m — 1) < 0.

This is a contradiction. Hence we consider the case hy = ho = --- = hy = 0. By
(3) and (4), Zle(degH(xi) —epn(z;,S)) > 1. By the choice of {z1,2,... 21}, one
of (i) and (ii) holds for any w € T \ ({x1,22, ..., 2k} U Nu({z1,20,... ,z}): (i)
degg_s(w) — degy(w) + en(w, S) = 1 or (i) degg_g(w) — degy(w) + en(w, ) =0
and deg, (w) — ey(w,S) > 1. Since {z1,22,... , 2} N V(H) # () and any vertices
veT\ ({x1,xe,... 2} UV(H)) satisty (i), we have

S (dege_g(x) — degy () + e (e, ) > [T — k — 2m + 1.

zeT



By this inequality, (3), Zle degy(xz;)) <m, 2 < k< (a+b+1—m)/a, and
|G| > (a+b)((k+m)(a+b—1) —1)/b, we obtain

—1>0S|+|T|—k—-2m+1—a|lT|=0bS|+ (1 —a)|T| —k—2m+1
>b0S|+(1—a)(|G]—1|S]) —k—2m+1
=(a+b-1)|S]—-(a—-1|G|—k—-2m+1

G
>(a+b-1) (Z’—_i_é—m) —(a—1)|G|—k—-2m+1
= il —m(a+b+1)—k+1
a+b

>(k+m)a+b—1)—1—m(a+b+1)—k+1
=k(a+b—2)—2m
>k(a+b—2)—2(a+b—ak)
=k(B3a+b—2)—2(a+b)
>2B3a+b—-2)—2(a+0b) =4(a—1) > 0.

Therefore Theorem 5 is proved. |}

Proof of Theorem 6. Suppose that GG satisfies the assumption of the theorem, but
has no desired [a, b]-factor for some subgraph H with m edges. Note that 6(G—H) >
a|G|/(a+b) —m > a hold by the conditions of Theorem 6. Then by Theorem 7, there
exist two disjoint subsets S and T" of V(G) such that

b|S| + Z (degg_g(z) — degy(z) + en(z,S) —a) < —1. (5)

zeT

We choose such subsets S and T so that |7'| is minimum.

By the argument of Claims 1, 2, and 3 in the proof of Theorem 5, we obtain
|S| > 1, |T| > b+ 1, and degq,_g(x) — degy(z) + en(x,S) <a—1forall x € T. We
now define

uy = min{degg_s(v) — deg(z) + en(x, ) |z € T},

and choose z1 € T such that degq_g(z1) —degy(z1) +en(z1,5) = uy and degy(x1) —
ep(x1,S) is minimum. For ¢ = 2,--- | |T'|, we define

u; = min{deg,_q(z) — degy(x) + em(x,S) |z € T\ {u,... ,ui—1} },

and choose z; € T'\ {z1,...,2;_1} such that deg,_g(x;) — degy (x;) + ey (:, S) = u;
and degy(7;) + em (4, S) is minimum. Then we have u; < uy < -+ < < a — 1.
By the condition of Theorem 6, the following inequalities hold:

M<5

L1 p S0(G) = degg(a) < deggg(x1) + 5] < ur + degy (1) — en(w1, 5) + 5],



which implies

alG
1512 A 1 deg (@) — entar,9)) (6)
On the other hand, by (5) and u; < uy < -+ < ), we have

17|
0> bS]+ Y ui—a|T| > b|S| + (u1 — a)|T| + 1
=1

> blS[+ (w1 = a)(|G] = |S]) + 1 = (a+ b —w)|S| = (@ —w)|G| + 1,

which implies

0> (a+b—u)|S| - (a—u)|G| + 1. (7)
By (6), (7), us Sug < -+ < wr < a—1,and |G| > (a+b)((m+1)(a+b+1)—5)/b,
G
0> (@+b—w) (;‘LL — (uy + degy (1) — eH(xl,S))) —(a—w)|G| +1
b
= - ilbm:\ —(a+b—u)(ur + degy (1) — ex(x1,9)) + 1
b
> ailbm (@t b—u)(u +m)+1

>u((m+1)(a+b+1)—=5)—(a+b—wuy)(us +m)+1

= w4 (mla+b+2) —4)u; —m(a+0b)+1

= (u1 — 1)* + m(a+b)(uy — 1) +2(m — 1)uy.
If u; > 1, then the above inequalities imply 0 > 0, a contradiction. Hence we
must consider the case u; = 0. By (6) and (7), degy (1) — eg(z1,S) > 1. By the
definition of @1, ,... , 2|, one of (i) and (ii) holds for any w € {z,... ,zp}: (i)
degs_g(w) — degy(w) + ep(w, S) > 1 or (ii) degy_g(w) — degy(w) + ex(w,S) = 0
and degy(w) — ey (w, S) > 1. Therefore we have

S (dege_g(@) — degy () + en(x, $)) > T] - 2m.

z€T
By this inequality, (5), and |G| > (a +b)((m + 1)(a+ b+ 1) — 5)/b, we obtain
—1>0S|+|T| —2m —a|T|=b|S|+ (1 — a)|T| — 2m
> bS]+ (1 = a)(|G| = [5]) = 2m
=(a+b—1)|S|—(a—1)|G| —2m

alG|
> _ Bt sl — (g — _
> (a+0b 1)(a—|—b m) (a —1)|G| —2m
b G|
>(m+1)(a+b+1)—5—m(a+b+1)
=a+b—4>—-1.

Finally the proof of Theorem 6 is complete. [
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