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Abstract

Let R and B be two disjoint sets of red points and blue points, respectively, in
the plane such that no three points of R ∪ B are co-linear. Suppose ag ≤ |R| ≤
(a + 1)g, bg ≤ |B| ≤ (b + 1)g. Then without loss of generality, we can express
|R| = a(g1 + g2) + (a + 1)g3, |B| = bg1 + (b + 1)(g2 + g3), where g = g1 + g2 + g3,
g1 ≥ 0, g2 ≥ 0, g3 ≥ 0 and g1+g2+g3 ≥ 1. We show that the plane can be subdivided
into g disjoint convex polygons X1 ∪ · · · ∪Xg1 ∪ Y1 ∪ · · · ∪ Yg2 ∪ Z1 ∪ · · · ∪ Zg3 such
that every Xi contains a red points and b blue points, every Yi contains a red points
and b + 1 blue points and every Zi contains a + 1 red points and b + 1 blue points.

1 Introduction

We consider two disjoint sets R and B of red points and blue points in the plane, respec-
tively. We always assume that R ∪ B is in general position, that is, no three points of
R ∪ B lie on the same line. We want to subdivide the plane into some disjoint convex
polygons so that each polygon contains prescribed numbers of red points and blue points.
We begin with some known results on this problem.

The following Theorem 1, which was conjectured in [5] and proved for a = 1, 2 in
[5] and [6], has been established in full generality by Bespamyatnikh, Kirkpatrick and
Snoeyink [2], Sakai [9] and by Ito, Uehara and Yokoyama [3], independently. Note that
this theorem with g = 2 is equivalent to the famous Ham-sandwich Theorem for the plane
[4].

Theorem 1 (The Equitable Subdivision Theorem [2], [3], [9]) Let a ≥ 1, b ≥ 1
and g ≥ 2 be integers. If |R| = ag and |B| = bg, then there exists a subdivision X1∪X2 ∪
· · · ∪Xg of the plane into g disjoint convex polygons such that every Xi contains exactly
a red points and b blue points.

The next theorem shows that if a = 1 in the above Theorem 1, we can obtain more
general subdivision.
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Theorem 2 (Kaneko and Kano [6]) Let b ≥ 1 be an integer. Suppose that R is a
disjoint union of R1 and R2. If |R1| = g1, |R2| = g2 and |B| = (b − 1)g1 + bg2, then we
can subdivide the plane into g1 + g2 disjoint convex polygons X1∪ · · ·∪Xg1 ∪Y1∪ · · ·∪Yg2

so that every Xi contains exactly one red point of R1 and b− 1 blue points, and every Yj

contains exactly one red point of R2 and b blue points.

The next theorem shows another result on balanced subdivisions.

Theorem 3 (Kaneko, Kano and Suzuki [8]) Let a ≥ 1, g ≥ 0 and h ≥ 0 be integers
such that g + h ≥ 1. If |R| = ag + (a + 1)h and |B| = (a + 1)g + ah, then there exists a
subdivision X1∪· · ·∪Xg∪Y1∪· · ·∪Yh of the plane into g+h disjoint convex polygons such
that every Xi contains exactly a red points and a + 1 blue points and every Yj contains
exactly a + 1 red points and a blue points.

In this paper, we consider balanced subdivision problem in the case that ag ≤ |R| ≤
a(g+1) and bg ≤ |B| ≤ b(g+1). As we shall show in Lemma 5, in this case we can express
|R| = a(g1 + g2)+(a+1)g3 and |B| = bg1 +(b+1)(g2 + g3), or |R| = ag1 +(a+1)(g2 + g3)
and |B| = b(g1 + g2) + (b + 1)g3 for some integers g1, g2, g3 ≥ 0 with g1 + g2 + g3 ≥ 1. By
symmetry, we may assume that

|R| = a(g1 + g2) + (a + 1)g3 and |B| = bg1 + (b + 1)(g2 + g3) (1)

holds. The following theorem is our main result.

Theorem 4 Let a ≥ 1, b ≥ 1, g1 ≥ 0, g2 ≥ 0 and g3 ≥ 0 be integers such that g1+g2+g3 ≥
1. If |R| = a(g1 + g2) + (a + 1)g3 and |B| = bg1 + (b + 1)(g2 + g3), then there exists a
subdivision X1∪· · ·∪Xg1∪Y1∪· · ·∪Yg2∪Z1∪· · ·∪Zg3 of the plane into g1+g2+g3 disjoint
convex polygons such that every Xi contains exactly a red points and b blue points, every
Yi contains exactly a red points and b + 1 blue points, and every Zi contains exactly a + 1
red points and b+1 blue points, if g1 ≥ 1, g2 ≥ 1 and g3 ≥ 1, respectively (see Figure 1).

We call the subdivision of the plane given in the above theorem a general balanced
subdivision. Moreover, we notice that our proof of the above Theorem 4 gives O(n4) time
algorithm for finding a balanced subdivision of the plane, where n is the total number of
red and blue points.

Before giving proofs, we remark that it seems to be impossible to derive our Theorem 4
from Theorem 1. Namely, someone may consider in the following way. Add some new
imaginary red points and blue points so that in the resulting plane, there are exactly
a(g + 1) red points and (b + 1)g blue points. Then we apply Theorem 1 to obtain an
equitable subdivision of the plane, and remove the imaginary points. However, it seems
to be impossible to guarantee that we can add new points so that each polygon of an
equitable subdivision contains at most one imaginary red point and at most one blue
point. Namely, some polygon may contain more than one imaginary red point or more
than one imaginary blue point. Therefore, it seems to be impossible to derive Theorem 4
from Theorem 1.
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R={     }  and   B={       }

Figure 1: g1 = 3, g2 = 1, g3 = 2, |R| = 2(g1 + g2) + 3g3 and |B| = 3g1 + 4(g2 + g3); and
a balanced subdivision of the plane.

2 Proof of Theorem 4

We begin with some definitions and notation. We deal only with directed lines in order
to define the right side of a line and the left side of it. Thus a line means a directed
line. A line l dissects the plane into three pieces: l and the two open half-planes right(l)
and left(l) that are bounded to the left and to the right of l, respectively (see Figure 2).
For a line l, we define l∗ as the line lying on l and having the opposite direction of l (see
Figure 2). Furthermore, we always assume that a line does not pass through any point in
R ∪ B.

left(l)
right(l)

l l

l*

Figure 2: right(l), left(l) and the line l∗.

Lemma 5 Let a ≥ 1, b ≥ 1 and g ≥ 1 be integers. If ag ≤ |R| ≤ (a + 1)g and
bg ≤ |B| ≤ (b + 1)g, then we can uniquely express either |R| = a(g1 + g2) + (a + 1)g3 and
|B| = bg1 +(b+1)(g2 +g3), or |R| = ag1 +(a+1)(g2 +g3) and |B| = b(g1 +g2)+(b+1)g3,
where g1 ≥ 0, g2 ≥ 0, g3 ≥ 0 and g = g1 + g2 + g3.

(proof) We can uniquely express |R| = ax+(a+1)(g−x) and |B| = by+(b+1)(g−y) for
some integers 0 ≤ x ≤ g and 0 ≤ y ≤ g. If x ≥ y, then by letting g1 = y, g2 = x− y and
g3 = g − x, we can express |R| = a(g1 + g2) + (a + 1)g3 and |B| = bg1 + (b + 1)(g2 + g3).
Otherwise, by letting g1 = x, g2 = y−x and g3 = g−y, we have |R| = ag1+(a+1)(g2+g3)
and |B| = b(g1 + g2) + (b + 1)g3. The uniqueness of the expression can be easily proved.
�

The following theorem, called the 3-cutting Theorem, plays an important role. This
theorem was proved by Bespamyatnikh, Kirkpatrick and Snoeyink [2] under the assump-

3



tion that

m1

n1
=

m2

n2
=

m3

n3
.

However this condition can be removed without changing the arguments in the proof given
in [2]. This relaxation is necessary to prove our Theorem 4. Note that similar results,
which seem to be essentially equivalent to the original 3-cutting Theorem, were obtained
in [3] and [9], respectively.

Theorem 6 (The 3-cutting Theorem [2]) Let m1, m2, m3, n1, n2, n3 be positive inte-
gers such that |R| = m1 + m2 + m3 and |B| = n1 + n2 + n3. Suppose that one of the
following statements (i) or (ii) is true:

(i) For every integer i ∈ {1, 2, 3} and for every line l such that |right(l)∩R| = mi, we
have |right(l) ∩B| < ni (Figure 3 (a)).

(ii) For every integer i ∈ {1, 2, 3} and for every line l such that |right(l) ∩ R| = mi,
we have |right(l) ∩ B| > ni.

Then there exists three rays emanating from a certain same point such that the three
open polygons Wi (1 ≤ i ≤ 3) defined by these three rays are convex, and each Wi (1 ≤
i ≤ 3) contains exactly mi red points and hi blue points (Figure 3 (b)). Moreover, one of
the three rays can be chosen to be a vertically downward ray.

W1

W2

W3m1  red points

less than ni
blue points

mi  red points

m2  red points

m3  red points

l  n1  blue points  n3  blue points

 n2  blue points

(a) (b)

Figure 3: A subdivision W1 ∪W2 ∪W3 of the 3-cutting Theorem.

Two different proofs of the next lemma can be found in [5] and [2].

Lemma 7 If there exist two lines l1 and l2 such that |right(l1)∩R| = |right(l2)∩R| and
|right(l1)∩B| < |right(l2)∩B|, then for every integer n, |right(l1)∩B| ≤ n ≤ |right(l2)∩
B|, there exists a line l3 such that |right(l3)∩R| = |right(l1)∩R| and |right(l3)∩B| = n.

Proof of Theorem 4. Let g = g1+g2+g3. We shall prove the theorem by induction on
g. It is trivial that the theorem holds for g = 1, and so we may assume g ≥ 2. Moreover,
by Theorem 1, if g1 = g2 = 0, g2 = g3 = 0 or g1 = g3 = 0 then the theorem is true. So we
may assume that

at least two of g1, g2 and g3 are greater than or equal to 1. (2)
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Assume that there exist three integers r ≥ 0, s ≥ 0, t ≥ 0 and two lines l1 and l2
such that 1 ≤ r + s + t ≤ g − 1, |right(l1) ∩ R| = |right(l2) ∩ R| = a(r + s) + (a + 1)t,
|right(l1) ∩ B| ≤ br + (b + 1)(s + t) and |right(l2) ∩ B| ≥ br + (b + 1)(s + t). Then by
Lemma 7, there exists a line l3 that satisfies

|right(l3) ∩ R| = a(r + s) + (a + 1)t and |right(l3) ∩ B| = br + (b + 1)(s + t). (3)

By applying the inductive hypotheses to right(l3) and left(l3) respectively, we can obtain
the desired balanced subdivision of the plane. Therefore we may assume that the next
claim holds.

Claim 1. Let (r, s, t) be a triple of integers such that 0 ≤ r ≤ g1, 0 ≤ s ≤ g2, 0 ≤ t ≤
g3 and 1 ≤ r+ s+ t ≤ g−1. Then for every line l with |right(l)∩R| = a(r+ s)+(a+1)t,
we always have either

|right(l) ∩B| < br + (b + 1)(s + t) or |right(l) ∩B| > br + (b + 1)(s + t),

in particular, |right(l) ∩B| �= br + (b + 1)(s + t).

By Claim 1, we can define the sign of every triple (i, j, k) with 0 ≤ i ≤ g1, 0 ≤
j ≤ g2, 0 ≤ k ≤ g3 and 1 ≤ i + j + k ≤ g − 1 as follows: For every line l with
|right(l) ∩ R| = a(i + j) + (a + 1)k,

if |right(l) ∩ B| > bi + (b + 1)(j + k), then sign(i, j, k) = +; and

if |right(l) ∩ B| < bi + (b + 1)(j + k), then sign(i, j, k) = −.

The next claim gives an easy but useful property of sign(i, j, k).

Claim 2. Let i, j and k be integers such that 0 ≤ i ≤ g1, 0 ≤ j ≤ g2, 0 ≤ k ≤ g3

and 1 ≤ i + j + k ≤ g − 1. Then

sign(g1 − i, g2 − j, g3 − k) = −sign(i, j, k). (4)

We may assume that sign(i, j, k) = + since otherwise we can similarly prove the
claim. Let l be a line such that |right(l)∩R| = a(i + j) + (a + 1)k. Then |right(l)∩B| >
bi + (b + 1)(j + k) by sign(i, j, k) = +. This implies that

|right(l∗) ∩ R| = a(g1 − i + g2 − j) + (a + 1)(g3 − k), and

|right(l∗) ∩ B| = |left(l) ∩B| = |B| − |right(l) ∩B|
< b(g1 − i) + (b + 1)(g2 − j + g3 − k).

Hence sign(g1 − i, g2 − j, g3 − k) = − = −sign(i, j, k).

Claim 3. We may assume that the following four statements hold. (i) If g1 ≥ 1
g2 ≥ 1 and g3 ≥ 1, then sign(1, 0, 0) = sign(0, 1, 0) = sign(0, 0, 1). (ii) If g1 = 0, then
g2 ≥ 1, g3 ≥ 1 and sign(0, 1, 0) = sign(0, 0, 1). (iii) If g2 = 0, then g1 ≥ 1, g3 ≥ 1
and sign(1, 0, 0) = sign(0, 0, 1). (iv) If g3 = 0, then g1 ≥ 1, g2 ≥ 1 and sign(1, 0, 0) =
sign(0, 1, 0).
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l2
right(l1)right(l2)

l1

a-th red point

(a+1)-th red point

Figure 4: Lines l1 and l2.

(proof) We first consider the case where g1 ≥ 1, g2 ≥ 1, g3 ≥ 1 and sign(1, 0, 0) = −. Let
l1 and l2 be two parallel lines such that |right(l1) ∩ R| = a, |right(l2) ∩ R| = a + 1 and
that l1 and l2 pass very close to the a-th red point and (a + 1)-th red point, respectively
(see Figure 4). Then |right(l1) ∩B| < b by sign(1, 0, 0) = −.

The existence of l1 implies sign(0, 1, 0) = − by Claim 1. Assume sign(0, 0, 1) = +.
Then |right(l2) ∩ B| > b + 1, and thus we can find a line l3 between l1 and l2 such that
right(l3) contains exactly a red points and b + 1 blue points. This contradicts Claim 1
with (0, 1, 0). Hence sign(0, 0, 1) = −.

We next consider the case where g1 ≥ 1, g2 ≥ 1, g3 ≥ 1 and sign(1, 0, 0) = +. Let l1
and l2 be the two parallel lines given above. Then |right(l1)∩B| > b by sign(1, 0, 0) = +.
Since |right(l1) ∩ B| �= b + 1 by Claim 1 with (0, 1, 0), we have |right(l1) ∩ B| ≥ b + 2.
Hence sign(0, 1, 0) = +. Furthermore, since |right(l2) ∩ B| ≥ |right(l1) ∩ B| ≥ b + 2, we
have sign(0, 0, 1) = +.

By the above two results, we can say that for every α ∈ {+,−}, sign(0, 1, 0) = α
implies sign(1, 0, 0) = α and sign(0, 0, 1) = α. Consequently, the statement (i) is proved.

Suppose g1 = 0. Then g2 ≥ 1 and g3 ≥ 1 by (2). Let l1 and l2 be the same lines as
given above. Assume sign(0, 1, 0) = −. Then |right(l1)∩B| < b + 1 by sign(0, 1, 0) = −.
If sign(0, 0, 1) = +, then |right(l2) ∩ B| > b + 1, and so we can find a line l4 between
l1 and l2 such that |right(l4) ∩ R| = a and |right(l4) ∩ B| = b + 1, which contradicts
Claim 1 with (0,1,0). Hence sign(0, 0, 1) = −. Next, assume sign(0, 1, 0) = +. Then
|right(l1) ∩B| > b + 1, and so |right(l2) ∩B| > b + 1. Hence sign(0, 0, 1) = +. Therefore
(ii) is proved.

Suppose that g2 = 0. Then g1 ≥ 1 and g3 ≥ 1 by (2). Let l1 and l2 be the same lines
as given above. Assume sign(1, 0, 0) = −. Then |right(l1) ∩ B| < b. If sign(0, 0, 1) = +,
then |right(l2) ∩ B| > b + 1, and so we can find a line l5 between l1 and l2 such that
|right(l5) ∩ R| = a and |right(l5) ∩ B| = b, which contradicts Claim 1 with (1, 0, 0).
Hence sign(0, 0, 1) = −. Assume sign(1, 0, 0) = +. Then |right(l1) ∩ B| > b, and thus
|right(l2) ∩ B| > b + 1 by Claim 1 with (0,0,1). Hence sign(0, 0, 1) = +. Consequently
(iii) is true.

We finally consider the case where g3 = 0. Then g1 ≥ 1 and g2 ≥ 1. Let l1 and l2 be the
same line as given above. If sign(1, 0, 0) = −, then sign(0, 1, 0) = − as |right(l1)∩B| < b.

6



If sign(1, 0, 0) = +, then |right(l1)∩B| > b, and so |right(l1)∩B| > b+1 by Claim 1 with
(0, 1, 0), which implies sign(0, 1, 0) = +. Consequently, (iv) holds, and hence Claim 3 is
proved.

Because of symmetry, hereafter we assume

sign(1, 0, 0) = sign(0, 1, 0) = sign(0, 0, 1) = −, (5)

when we can consider these signs. We say that three triples (r1, s1, t1), (r2, s2, t2), (r3, s3, t3)
satisfy the condition of the 3-cutting Theorem if

g1 = r1 + r2 + r3, g2 = s1 + s2 + s3, g3 = t1 + t2 + t3

sign(r1, s1, t1) = sign(r2, s2, t2) = sign(r3, s3, t3), and

0 ≤ ri, si, ti and 1 ≤ ri + si + ti for every i ∈ {1, 2, 3}.
If a set of three triples {(ri, si, ti) | 1 ≤ i ≤ 3} satisfies the above conditions, then

mi = a(ri + si) + (a + 1)ti and ni = bri + (b + 1)(si + ti), (1 ≤ i ≤ 3)

satisfy the condition of the 3-cutting Theorem, and so we can subdivide the plane into
three convex polygons, each of which contains exactly mi red points and ni blue points,
and thus we can obtain the desired subdivision by applying the inductive hypotheses to
each convex polygon.

Claim 4. If g1 = 0, then there exist three triples (ri, si, ti) (1 ≤ i ≤ 3) that satisfy
the condition of the 3-cutting Theorem, and thus the theorem 4 holds.

Since g1 = 0, we have g2 ≥ 1 and g3 ≥ 1 by (2). Then sign(0, g2 − 1, g3) =
−sign(0, 1, 0) by Claim 2. Choose the lowest element (0, s, t) in lexicographical order
such that sign(0, s, t) �= sign(0, 1, 0), that is, sign(0, s′, t′) = sign(0, 1, 0) if s′ < s or
s′ = s and t′ < t. If s = 0, then t ≥ 2 by (5), and so we obtain the following three triples
that satisfy the conditions of the 3-cutting Theorem.

(0, g2, g3 − t), (0, 0, t− 1), (0, 0, 1),

where sign(0, g2, g3 − t) = −sign(0, 0, t) = sign(0, 1, 0) = sign(0, 0, 1) = − by Claims 2
and 3, and sign(0, 0, t − 1) = sign(0, 1, 0) = − by the choice of (0, s, t) and s = 0. If
s ≥ 1, then s ≤ g2 − 1 by the above fact that sign(0, g2 − 1, g3) = −sign(0, 1, 0), and
so 1 ≤ g2 − s. Furthermore, if s = 1, then 1 ≤ t by sign(0, s, t) �= sign(0, 1, 0) and (5).
Hence by claim 2, we can obtain the following desired three triples:

(0, g2 − s, g3 − t), (0, s− 1, t), (0, 1, 0),

where sign(0, g2 − s, g3 − t) = −sign(0, s, t) = sign(0, 1, 0) = −. Therefore Claim 4 is
proved.

Claim 5. If g1 ≥ 1, then we may assume that sign(0, j, k) = sign(1, 0, 0) for all
0 ≤ j ≤ g2 and 0 ≤ k ≤ g3 with 1 ≤ j + k since otherwise the theorem 4 holds.
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Assume that sign(0, j, k) �= sign(1, 0, 0) for some 0 ≤ j ≤ g2 and 0 ≤ k ≤ g3

with 1 ≤ j + k. Choose the lowest element (0, s, t) in lexicographical order such that
sign(0, s, t) �= sign(1, 0, 0). By (5), it follows that 2 ≤ s + t. By Claim 2, we have
sign(g1, g2− s, g3− t) = −sign(0, s, t) = sign(1, 0, 0) = sign(0, 1, 0). If s ≥ 2, then by (5)
we obtain the following three triples that satisfy the conditions of the 3-cutting Theorem.

(g1, g2 − s, g3 − t), (0, s− 1, t), (0, 1, 0).

If s = 1, then t ≥ 1 and so we have the following three triples:

(g1, g2 − 1, g3 − t), (0, 1, t− 1), (0, 0, 1).

If s = 0, then t ≥ 2, and we obtain the desired three triples as follows:

(g1, g2, g3 − t), (0, 0, t− 1), (0, 0, 1).

In each case, the theorem is proved by induction, and hence we may assume that Claim 5
holds.

Claim 6. If g1 ≥ 1, then there exist three triples (ri, si, ti) (1 ≤ i ≤ 3) that satisfy
the condition of the 3-cutting Theorem, and hence the theorem 4 holds.

By (2), we have g2 ≥ 1 or g3 ≥ 1. Here we assume g2 ≥ 1 since we can similarly prove
the claim in the case of g3 ≥ 1. Since sign(g1, g2−1, g3) = −sign(0, 1, 0) = −sign(1, 0, 0),
there exists (i, j, k) such that sign(i, j, k) �= sign(1, 0, 0), 0 ≤ i ≤ g1, 0 ≤ j ≤ g2, 0 ≤ k ≤
g3 and 1 ≤ i+j+k ≤ g−1. Choose the lowest element (r, s, t) in lexicographical order such
that sign(r, s, t) �= sign(1, 0, 0), in particular, sign(r′, s′, t′) = sign(1, 0, 0) if r′ < r. By
Claim 5, we have r ≥ 1, and if r = 1, then s+ t ≥ 1 by sign(1, s, t) �= sign(1, 0, 0). Hence
we obtain the following desired three triples that satisfy the conditions of the 3-cutting
Theorem.

(g1 − r, g2 − s, g3 − t), (r − 1, s, t), (1, 0, 0),

where sign(g1 − r, g2 − s, g3 − t) = −sign(r, s, t) = sign(1, 0, 0) and sign(r − 1, s, t) =
sign(1, 0, 0).

By Claims 4 and 6, the proof is complete. �

We now analyze the time complexity of an algorithm for finding a balanced subdivision
of the plane, which is directly obtained from our proof. We first consider an algorithm
for finding a line l3 that satisfies (3). Since there are O(n2) lines passing through two
points of R ∪ B, we can find a line l3 satisfying (3), if any, in O(n3) time. Notice that
for a line l passing through two points x and y of R ∪ B, we consider the four cases; (i)
x, y ∈ right(l), (ii) x ∈ right(l) and y �∈ right(l), (iii) x �∈ right(l) and y ∈ right(l); and
(iv) x, y �∈ right(l). If there exists no such line l, then we can define sign(i, j, k), and
there exist three rays given in the 3-cutting Theorem. We can find such three rays in
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O(n
4
3 (log n)2) by [2]. Therefore in any case, if we denote by f(n) the time complexity of

finding a balanced subdivision of the plane with n = |R|+ |B| points, then we have

f(n) ≤ O(n3) + f(n1) + f(n2) + f(n3),

where n1 + n2 + n3 = n, n1 ≥ a + b, n2 ≥ a + b, n3 ≥ 0, and n3 = 0 if and only if there
exists a line l3. Consequently, we obtain f(n) ≤ O(n4).

References
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