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Abstract

In this paper we consider the problem of partitioning complete mul-
tipartite graphs with edge-colored by 2 colors into minimum number
of vertex disjoint monochromatic trees, cycles and paths, respectively.
For general graphs the three problems are simply addressed by the
2-PGMT, 2-PGMC and 2-PGMP problems, respectively. We show
that for complete and complete bipartite graphs, both 2-PGMC and
2-PGMP problems are NP -complete, however for all complete mul-
tipartite graphs the 2-PGMT problem can be solved in polynomial
time. Since a complete graph can be viewed as a complete multipar-
tite graph such that every partite of it is a single vertex, the former
implies that for complete multipartite graphs, both 2-PGMC and 2-
PGMP problems are NP-complete. This also implies that for general
graphs, both 2-PGMC and 2-PGMP problems are NP-complete, but
whether the 2-PGMT problem is NP-complete is still unknown. This
addresses a question proposed by the authors in a previous paper.
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1 Introduction

Many combinatorial problems can be described as finding a partition of the
vertex set of a given graph into subsets satisfying certain properties. Many
graph partition problems and their corresponding computational complexity
problems have been well studied [1, 2, 5, 6, 11], most of which are shown to be
NP -complete. More general partition problems can be found in MacGillivray
and Yu [15] and Feder et al [4]. A list of graph partition problems can be
found in the book [6].

Some researchers also focused their consideration on the graph partition
problems in edge-colored graphs [3, 8, 9, 10, 14]. For example, in [3] Erdös
et al showed that if the edges of a complete graph are colored by r colors,
then the vertex set of the complete graph can be covered by at most crlogr
vertex disjoint monochromatic cycles, where c is a constant. The authors
of [3, 9, 10, 14] focused their consideration on the problem of determining
the minimum number k such that whenever the edges of G are colored by at
most r colors, the vertex set of G can be covered by at most k vertex disjoint
monochromatic trees or cycles. Jin annd Li [12] studied the following opti-
mal problems: Given an edge-colored graph G, find the minimum number
of vertex disjoint monochromatic trees, cycles and paths, respectively, which
cover the vertex set of G. Note that here a single vertex is also regarded as
a monochromatic tree, path or cycle. For convenience, we simply call the
three problems the PGMT, PGMC and PGMP problem, respectively. They
showed that in general all the three problems are NP -complete and there
does not exist constant factor approximation algorithm for any of the three
problems unless P = NP .

Note that the PGMT problem looks like the problem of partitioning a
graph into induced forests [6]. But actually it is not the case. The following
facts are easily seen. If G is colored properly, i.e., adjacent edges receive
different colors, both the PGMT and the PGMP problems are equivalent to
the edge cover problem, which can be solved in polynomial time by graph
matching algorithm [6]. If G is colored with one color, i.e., only one color is
presented at each vertex, the PGMT problem is equivalent to the spanning
tree problem, and can be solved in polynomial time, while the PGMC and
PGMP problem is equivalent to the Hamiltonian cycle and Hamiltonian path
problem, respectively, and hence both of which are NP -complete. Jin and
Li [12] asked the following question: Does the PGMT (PGMC, or PGMP)
problem remain to be NP -complete when the edges of G are colored by only
2 colors ? For convenience, we simply denote by 2-PGMT, 2-PGMP and
2-PGMC, respectively, the PGMT, PGMP and PGMC problem if the edges
of G are colored by 2 colors. Jin and Li [13] showed that, even if at most 2
colors are presented at each vertex (maybe more than 2 colors are used), all
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the PGMT, PGMC and PGMP problems remain to be NP -complete.

In this paper we consider the complexity of the three problems for com-
plete multipartite graphs with edge-colored by 2 colors, and show that for
complete and complete bipartite graphs, both 2-PGMC and 2-PGMP prob-
lems are NP -complete, however for all complete multipartite graphs the 2-
PGMT problem can be solved in polynomial time. Since a complete graph
can be viewed as a complete multipartite graph such that every partite of it is
a single vertex, the former implies that for complete multipartite graphs, both
2-PGMC and 2-PGMP problems are NP-complete. This also implies that
for general graphs, both 2-PGMC and 2-PGMP problems are NP-complete,
but whether the 2-PGMT problem is NP-complete is still unknown. This
addresses a question in [12].

2 Complete graphs with edge-colored by 2

colors

At first we focus on studying the 2-PGMC problem for complete graphs. For
general graphs the corresponding decision version of the 2-PGMC problem
is defined formally as follows:

THE 2-PGMC PROBLEM

INSTANCE: A graph G with edge-colored by 2 colors, and a positive
integer k.

QUESTION: Are there k or less vertex disjoint monochromatic cycles,
which cover the vertex set of the graph G?

The corresponding decision versions of the 2-PGMT and 2-PGMP prob-
lems can be defined similarly. In the sequel we show that even for k = 1,
both 2-PGMC and 2-PGMP problems for complete and complete bipartite
graphs are NP-complete.

For the 2-PGMT problem, let the edges of the complete graph Kn be
colored by 2 colors, say red and blue. Since for any graph G, at least one
of G and its complement graph G must be connected. Suppose that the set
of all red edges spans the graph G, then the set of all blue edges spans the
graph G. So we have a monochromatic spanning tree in Kn. This implies
that the 2-PGMT problem for complete graphs can be solved in polynomial
time. However, for the other two problems we have the following results.

Theorem 2.1 The 2-PGMC problem is NP -complete for complete graphs.

3



Proof. The problem is clearly in NP , since a nondeterministic algorithm
needs only to guess a set of cycles and check in polynomial time that the
cycles in the set are vertex disjoint monochromatic ones and cover the vertex
set of the given graph.

It is sufficient to show that the problem is NP-complete for k = 1. We
transform the Hamiltonian path problem to the 2-PGMC problem for com-
plete graph. Let an arbitrary instance of the Hamiltonian path problem be
given by a graph G on n vertices. Here we construct a complete graph Kn+1

with edge-colored by 2 colors such that G contains a Hamiltonian path if
and only if the constructed complete graph Kn+1 contains a monochromatic
Hamiltonian cycle.

The complete graph Kn+1 is constructed as follows: Let v be an additional
vertex, and let G∗ = G ∨ H , where H consists of the single vertex v. Let
Kn+1 = G∗ ∪ G∗, and let every element of E(G∗) be colored by red, while
every element of E(G∗) be colored by blue. We claim that G contains a
Hamiltonian path if and only if the constructed complete graph Kn+1 con-
tains a monochromatic Hamiltonian cycle.

If G contains a Hamiltonian path, denoted by P = u1u2 · · ·un, then
C = vu1u2 · · ·unv is a monochromatic Hamiltonian cycle in Kn+1. Sup-
pose that Kn+1 contains a monochromatic Hamiltonian cycle, denoted by
C = vu1u2 · · ·unv. Since every edge incident to v is colored by red, every
edge on C must appear in the graph G. This implies that u1u2 · · ·un is a
Hamiltonian path of G. The proof is complete.

Theorem 2.2 The 2-PGMP problem is NP -complete for complete graphs.

Proof. The problem is clearly in NP , since a nondeterministic algorithm
needs only to guess a set of paths and check in polynomial time that the
paths in the set are vertex disjoint monochromatic ones and cover the vertex
set of the given graph.

It is sufficient to show that the problem is NP-complete for k = 1. Here
we also transform the Hamiltonian path problem to the 2-PGMP problem for
complete graphs. Let an arbitrary instance of the Hamiltonian path problem
be given by a graph G on n vertices. Here we construct a complete graph
K2n+1 with edge-colored by 2 colors such that G contains a Hamiltonian path
if and only if the constructed complete graph K2n+1 contains a monochro-
matic Hamiltonian path.

The complete graph K2n+1 is constructed as follows: Let v be an addi-
tional vertex. Take a disjoint copy G

′
of G. Let G∗ = (G ∪ G

′
) ∨H , where
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H consists of the single vertex v. Let K2n+1 = G∗ ∪ G∗, and let every ele-
ment of E(G∗) be colored by red, while every element of E(G∗) be colored
by blue. We claim that G contains a Hamiltonian path if and only if the con-
structed complete graph K2n+1 contains a monochromatic Hamiltonian path.

If G contains a Hamiltonian path, denoted by P = u1u2 · · ·un, then it is
easy to see that K2n+1 contains a monochromatic Hamiltonian path. Sup-
pose that K2n+1 contains a monochromatic Hamiltonian path, denoted by
Q = x1x2 · · ·xnxn+1xn+2 · · ·x2n+1. Since every edge incident to v is colored
by red, and every edge connecting vertices of G and G

′
is colored by blue,

the first or last n vertices of Q must appear in the graph G. This implies
that G contains a Hamiltonian path. This completes the proof.

Since a complete graph can be viewed as a complete multipartite graph
such that every partite of it is a single vertex, the above two results imply
that for complete multipartite graphs, both 2-PGMC and 2-PGMP problems
are NP-complete. This also implies that for general graphs, both 2-PGMC
and 2-PGMP problems are NP-complete, but whether the 2-PGMT problem
is NP-complete is still unknown. This addresses a question in [12].

3 Complete bipartite graphs with edge-colored

by 2 colors

In this section we consider the three problems for complete multipartite
graphs with edge-colored by 2 colors. First we deal with the complete bipar-
tite case. Although a complete graph can be viewed as a multipartite graph,
in most cases it is not bipartite. We know from [7] that the Hamiltonian
path and Hamiltonian cycle problems are NP-complete for bipartite graphs.
Actually, this can be easily seen from the fact that by subdividing every edge
of a graph exactly once, the original graph has the same Hamiltonian prop-
erty as the resultant bipartite graph. From this fact, we have the following
results.

Theorem 3.1 The 2-PGMC problem is NP -complete for complete bipartite
graphs.

Proof. The problem is clearly in NP , since a nondeterministic algorithm
needs only to guess a set of cycles and check in polynomial time that the
cycles in the set are vertex disjoint monochromatic ones and cover the vertex
set of the given graph.

It is sufficient to show that the problem is NP-complete for k = 1. Here
we transform the Hamiltonian path problem for bipartite graph to the 2-
PGMP problem for complete bipartite graphs. Let an arbitrary instance of
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the Hamiltonian path problem for bipartite graphs be given by a bipartite
graph G = G(U, V ), where |U |+ 1 = |V | = n. Here we construct a complete
bipartite graph Kn,n with edge-colored by 2 colors such that G contains a
Hamiltonian path if and only if the constructed complete bipartite graph
Kn,n contains a monochromatic Hamiltonian cycle.

The complete bipartite graph Kn,n is constructed as follows: Let u be an
additional vertex, and let G∗ be a graph on the vertex set V (G) ∪ {u} with
edge set E(G∗) = E(G) ∪ {uv : v ∈ V }. Denote by G∗ the graph on the

vertex set V (G) ∪ {u} with edge set E(G∗) = {xy /∈ E(G) : x ∈ U, y ∈ V }.
Let Kn,n = G∗ ∪ G∗, and color every element in E(G∗) by red, while color
every element in E(G∗) by blue. We claim that G contains a Hamiltonian
path if and only if the constructed complete bipartite graph Kn,n contains a
monochromatic Hamiltonian cycle.

If G contains a Hamiltonian path, denoted by P = xu1 · · · y, x, y ∈ V ,
then C = uxu1 · · ·yu is a monochromatic Hamiltonian cycle inKn,n. Suppose
that Kn,n contains a monochromatic Hamiltonian cycle, denoted by C =
uxu1 · · · yu. Since every edge incident to u is colored by red, every edge on
C must appear in the graph G. This implies that xu1 · · · y is a Hamiltonian
path of G. The proof is complete.

Theorem 3.2 The 2-PGMP problem is NP -complete for complete bipartite
graphs.

Proof. The problem is clearly in NP , since a nondeterministic algorithm
needs only to guess a set of paths and check in polynomial time that the
paths in the set are vertex disjoint monochromatic ones and cover the vertex
set of the given graph.

It is sufficient to show that the problem is NP-complete for k = 1. Here
we also transform the Hamiltonian path problem for bipartite graphs to the
2-PGMP problem for complete bipartite graphs. Let an arbitrary instance
of the Hamiltonian path problem for bipartite graphs be given by a bipar-
tite graph G = G(U, V ), |U | + 1 = |V | = n. Here we construct a complete
bipartite graph K2n,2n−1 with edge-colored by 2 colors such that G contains
a Hamiltonian path if and only if the constructed complete bipartite graph
K2n,2n−1 contains a monochromatic Hamiltonian path.

The complete bipartite graph K2n,2n−1 is constructed as follows: Let
u be an additional vertex. Take a disjoint copy G

′
= G

′
(U

′
, V

′
) of G.

Let G∗ be the graph on the vertex set V (G) ∪ V (G
′
) ∪ {u} with edge set

E(G∗) = E(G)∪E(G
′
)∪ {ux : x ∈ V ∪V

′}. Denote by G∗ the graph on the
vertex set V (G)∪ V (G

′
)∪ {u} with edge set E(G∗) = {xy /∈ E(G

′
)∪E(G) :
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x ∈ U ∪U
′
, y ∈ V ∪V

′}. Let K2n,2n−1 = G∗ ∪G∗, and color every element in
E(G∗) by red, while color every element in E(G∗) by blue. We claim that G
contains a Hamiltonian path if and only if the constructed complete bipartite
graph Kn,n contains a monochromatic Hamiltonian path.

If G contains a Hamiltonian path, denoted by P = x · · · y, then it is
easy to see that K2n,2n−1 contains a monochromatic Hamiltonian path. Sup-
pose that K2n,2n−1 contains a monochromatic Hamiltonian path, denoted by
Q = x1x2 · · ·x2n−1x2nx2n+1 · · ·x4n−1. Since every edge incident to u is col-
ored by red and every edge connecting vertices of G and G

′
is colored by

blue, the first or last 2n− 1 vertices of Q must appear in the graph G. This
implies that G contains a Hamiltonian path. The proof is complete.

The authors of [14] determined the tree partition number for complete
multipartite graphs with edge-colored by 2 colors, where the tree partition
number of a graph G with edge-colored by r colors is defined to be the
minimum number k such that whenever the edges of G are colored with
r colors, the vertex set of G can be covered by at most k vertex disjoint
monochromatic trees. The next result shows that, given a complete bipartite
graph Km,n with edge-colored by 2 colors, we can find the minimum number
of vertex disjoint monochromatic trees to cover the vertex set of Km,n in
polynomial time.

Theorem 3.3 The 2-PGMT problem can be solved in polynomial time for
complete bipartite graphs.

Proof. Let Km,n = K(M, N) be a complete bipartite graph with edge-colored
by red and blue colors. Let R denote the spanning subgraph of Km,n with
edge set equal to the set of all red edges and B similarly the spanning sub-
graph of Km,n with edge set equal to the set all blue edges. We distinguish
the following cases.

Case 1 One of R and B is connected. Then we have a monochromatic span-
ning tree, and so we are done.

Case 2 Both R and B are disconnected. Then we need at least two vertex
disjoint monochromatic trees to cover the vertex set of Km,n. We distinguish
the following subcases.

Subcase 2.1 One of R and B contains at least two components such that
each of them contains at least one edge. Then, since both R and B have
at least two components, we can conclude that both R and B have exactly
two such components, say R1 and R2, B1 and B2, respectively; for other-
wise, if one has more than two such components, the other must be con-
nected, a contradiction. Moreover, we can deduce that R1 = K(M1, N1) and
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R2 = K(M2, N2) for some partition of M = M1 ∪M2 and N = N1 ∪ N2,
respectively, and B1 = K(M1, N2), B2 = K(M2, N1). So, the vertex set of
Km,n can be covered by two vertex disjoint monochromatic red or blue trees.

Subcase 2.2 BothR andB contain a unique component such that it contains
at least one edge, denoted by R0 and B0, respectively. Then, by assumption
R0 must totally cover one of the sets M or N , and the same is true for B0.
If R0 totally covers M (N) but B0 totally covers the other N (M), then,
since both R and B contain two components, R0 cannot totally cover the
set N (M) while B0 cannot totally cover the set M (N), say that N1 ⊂ N
(M1 ⊂ M) is not covered by R0 while M1 ⊂ M (N1 ⊂ N) is not covered
by B0. This implies that all the edges between N1 and M1 cannot receive
any of the 2 colors, a contradiction and hence this case cannot happen. So,
we assume that both R0 and B0 totally cover one common set of M and
N , say M . This implies that for any vertex x ∈ M , there are both red and
blue edges between x and N . Denote by N1 and N2 the sets of vertices not
covered by R0 and B0, respectively. Then N ⊃ N1 �= ∅, N ⊃ N2 �= ∅, and
N1 ∩ N2 = ∅, and N0 = N − N1 − N2 is covered by both R0 and B0. It is
easy to see that every vertex of N1 is incident only to blue edges, while every
vertex of N2 is incident only to red edges. If there is a proper nonempty
subset M∗ of M that is not a cutset for R0 or B0, say R0, then it is easy
to see that in R0 −M∗ and B0[M

∗ ∪ N1] we can find a monochromatic red
and a monochromatic blue tree, respectively, to partition the vertex set of
K(M, N). Otherwise, every proper nonempty subset of M is a cutset for
both R0 and B0. Especially, every vertex x ∈ M is a cut vertex for both
R0 and B0. Since every vertex in N2 is connected to every vertex in M by
a red edge, and every vertex in N1 is connected to every vertex in M by
a blue edge, we can conclude that for every vertex x in M , there exists at
least one neighbor of x with degree one in R0 and B0, respectively. So, for
every vertex x ∈ M , every component of R0 − x (or B0 − x) other than the
component containing some vertices of N2 (or N1) must be a single vertex.
We can find a matching Π between M and N0 saturated M such that the
end-vertex in N0 of every edge of Π is of degree one in R0. The same is true
for B0. Actually, our next analysis has nothing to do with whether there is
a proper nonempty subset M∗ of M such that M∗ is not a cutset for R0 or
B0. However, for seeing the structure clearly, we prefer to keeping the above
analysis.

Let P be a set of vertex disjoint monochromatic trees with minimum size,
which cover the vertex set of K(M, N). If there is a monochromatic tree in
P containing all the vertices of M , then because of the minimality of P this
tree must cover and only covers one of the sets N1 or N2. Otherwise, there
are two monochromatic trees in P, one red and the other blue, then because
of the minimality of P, N2 must be covered by the red tree, and N1 must
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be covered by the blue tree. So, in any case we know that P must satisfy
exactly one of the following properties:

(a) Only one of the sets N1 and N2 is covered by a monochromatic tree,
and each vertex of the other set forms a tree in P. In this case, M is
totally covered by the monochromatic tree.

(b) Both N1 and N2 is respectively covered by a monochromatic tree in P.
In order to find a set of vertex disjoint monochromatic trees with minimum
size to cover the vertex set of K(M, N), we first try to find two sets of vertex
disjoint monochromatic trees with minimum size, which respectively satisfies
property (a) and (b). Clearly, among these two sets, the one with minimum
size is, what we want, the set of vertex disjoint monochromatic trees with
minimum size which cover the vertex set of K(M, N). Since the set with
minimum size satisfying property (a) is trivial, in the following we focus on
finding the set with minimum size satisfying property (b).

First, we introduce some notations. For every vertex x ∈ N0, let Γr(x) =
{y ∈ M : xy is red}, called the red neighborhood of x. We define an equiv-
alent relation among the vertices of the set N0 as follows: Two vertices x1

and x2 of N0 is equivalent if and only if Γr(x1) = Γr(x2). So, according
to the red neighborhoods we can partition N0 into a number of equivalent
classes N0i, i = 1, 2, · · · , t. Then, we set up a one to one correspondence
between the set of classes N0i, i = 1, 2, · · · , t, and the set of nonempty sub-
sets Γr(x0i) of M , where x0i is a representative of the class N0i. Clearly,
t ≤ min{n− |N1| − |N2|, 2m − 1}. We distinguish the following subsubcases:

Subsubcase 2.2.1 If there is a proper nonempty subset M ′ of M such
that M ′ �= N0i for any i = 1, 2, · · · , t, then take a blue tree Tb such that
V (Tb)∩M = Mb = M ′, and take a red tree Tr such that V (Tr)∩M = Mr =
M −M ′ �= ∅. We then assign that Tb covers N1 and Tr covers N2. Next, for
any vertex x ∈ N0 if there is a blue edge between x and Mb, then assign x to
the blue tree Tb. Otherwise, all the edges between x and Mb are red. Since
Mb = M ′ is not a red neighborhood for any of the vertices in N0, there must
be a red edge between x and Mr, and then assign x to the red tree Tr. In
this way, every vertex of N0 is either connected to the blue tree Tb or the red
tree Tr, and so the two vertex disjoint monochromatic trees Tb and Tr totally
cover the vertex set of K(M, N).

Subsubcase 2.2.2 Otherwise, for every proper nonempty subset M ′ of M ,
there is a class N0i such that every vertex of N0i has a red neighborhood
equal to M ′. Choose a proper nonempty subset M ′ of M such that M ′

corresponds to a class N0k that has minimum size. Then, take a blue tree
Tb such that V (Tb) ∩ M = Mb = M ′, and take a red tree Tr such that
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V (Tr)∩M = Mr = M−M ′ �= ∅. So, Tb covers N1 and Tr covers N2. For any
vertex x ∈ N0 − N0k, if there is a blue edge between x and Mb, then assign
x to the blue tree Tb. Otherwise, all the edges between x and Mb are red.
Since x /∈ N0k, i.e., Γr(x) �= Mb(= M ′), there must be a red edge between x
and Mr, and then assign x to the red tree Tr. In this way, every vertex of
N0−N0k is either connected to the blue tree Tb or the red tree Tr, and so the
two monochromatic trees Tb and Tr together with the vertices of N0k form a
vertex disjoint cover of the vertex set of K(M, N). We claim that this is a
monochromatic partition with minimum size. In fact, since we want to find
a set P of vertex disjoint monochromatic trees with minimum size satisfy-
ing property (b), which cover the vertex set of K(M, N), there must be two
monochromatic red and blue trees Tr and Tb in P which totally cover the sets
N2 and N1, respectively. Since every vertex of M is incident to both red and
blue edges, every vertex of N1 is incident to only blue edges and every vertex
of N2 is incident to only red edges, because of the minimality of P we have
that Tr union Tb totally covers the set M . Let Mr ⊂ V (Tr) and Mb ⊂ V (Tb)
such that M = Mr ∪Mb, Mr �= ∅, Mb �= ∅ and Mr ∩Mb = ∅. Then any
tree of P other than Tr and Tb, if there exists, must be a single vertex of N0,
moreover, every edge between the single vertex and Mb is red and every edge
between the single vertex and Mr is blue, that is, the red neighborhood of the
single vertex is Mb. Any vertex in N0 other than this kind of single vertices
does not have this property. Denote these single vertices, if there exist, by a
set S. Then S has the property that any two vertices in S have the same red
neighborhood Mb, and any vertex of N0 that has this property must belong
to S, i.e., there is a class N0i such that N0i = S. Because of the minimality
of N0k, we have that |N0i| ≥ |N0k, and the claim is thus proved. Finally,
we claim that under the assumption of this subsubcase, S cannot be empty.
Otherwise, the two monochromatic trees Tr and Tb cover the vertex set of
K(M, N). Then, consider the proper nonempty subset M ′ = V (Tb) ∩M of
M . M ′ is not a red neighborhood for any of the vertices in N0. Otherwise,
say that x has the red neighborhood equal toM ′. Then, x cannot be assigned
to any of the two trees Tr and Tb, which contradicts to that the two trees
cover the vertex set of K(M, N).

We claim that both Subsubcases 2.2.1 and 2.2.2 can be done in polyno-
mial time. In fact, to find the equivalent classes can be done in polynomial
time, since this only involves checking whether the red neighborhoods of two
vertices in N0 are the same. Next, choose t proper nonempty subsets of M
randomly or in the following way: generating the k-subsets of M one by one
for k = 1, 2, · · ·. As soon as a k-subset is generated, we compare it with
every Γr(x0i)(⊂M) corresponding to the equivalent class N0i, i = 1, 2, · · · , t,
to check whether they are equal. By at most t2 such comparisons, we can
decide whether there is a proper nonempty subset M ′ of M such that M ′ is
not a red neighborhood for any of the vertices in N0. If yes, we have Subsub-

10



case 2.2.1, i.e., there are two monochromatic trees Tb and Tr partition the
vertex set of K(M, N), and this partition can be obtained from the subset
M ′ by the way in the proof of Subsubcase 2.2.1. If not, we have Subsubcase
2.2.2, and it can be done in polynomial time to find a class N0k among the
classes N0i, i = 1, 2, · · · , t, such that N0k has the minimum size. To check
whether such a subset M ′ exists can also be done in polynomial time, be-
cause this only involves t2 comparisons of two subsets of M . This is upper
bounded by t2m2, which is a very rough estimation. Since t < n, we have
that t2m2 < (mn)2. Obviously, Case 1 and the other subcases of Case 2 can
also be done in polynomial time. Therefore, there is an algorithm of polyno-
mial time to solve the 2-PGMT problem for complete bipartite graphs. The
proof is now complete.

The authors of [14] proved that, if the edges of a complete k-partite graph,
k ≥ 3, are colored red or blue in such a way that at least one red and one
blue edge are incident with every vertex, then it contains a monochromatic
spanning tree. For a complete bipartite graph, from the above proof we
can see that if its every vertex is incident with both some red and blue
edges, then its vertex set can be partitioned into at most two vertex disjoint
monochromatic trees. In general, for complete multipartite graphs, we can
employ a similar proof to that of Theorem 3.3 to get the following result.
For convenience of reading, we give part of its proof in detail.

Theorem 3.4 The 2-PGMT problem can be solved in polynomial time for
complete multipartite graphs.

Proof. Let G = K(V1, V2, · · · , Vk), k ≥ 3, be a complete k-partite graph with
edge-colored by red and blue colors. We distinguish the following cases.

Case 1 Every vertex is incident to both red and blue edges, then, from the
result of [14], we know that G contains a monochromatic spanning tree, and
so one monochromatic tree can cover the vertex set of G.

Case 2 Otherwise, there are some vertices that are incident with only red or
blue edges. Denote Nr = {x ∈ V (G) : every edge incident to x is red} and
Nb = {x ∈ V (G) : every edge incident to x is blue}. From the assumption,
without loss of generality we can assume that Nr �= ∅. We distinguish the
following subcases.

Subcase 2.1 If Nb = ∅, then every vertex is incident to at least one red
edge. No matter whether Nr is contained in the same partite of G, it is easy
to see that G contains a red spanning tree.

Subcase 2.2 Otherwise, Nb �= ∅. Clearly, both Nr and Nb are contained
in the same partite of G, without loss of generality, say in V1. Let N0 =
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V1−Nr−Nb. Then every vertex of N0 is incident to both some red and blue
edges. This implies that V (G) − Nb and V (G) − Nr can be spanned by a
red and blue tree, respectively. Let P be a set of vertex disjoint monochro-
matic trees with minimum size, which cover the vertex set of G. If there is
a monochromatic tree in P containing all the vertices of V (G) − V1, then
because of the minimality of P this tree must cover and only covers one of
the sets Vr and Vb. Otherwise, there must be two monochromatic trees in
P, one red and the other blue, and then because of the minimality of P, Nr

must be covered by the red tree, and Nb must be covered by the blue tree.
So, in any case we know that P must satisfy exactly one of the following
properties:

(a) Only one of the sets Nr and Nb is covered by a monochromatic tree, and
every vertex of the other set forms a tree in P. In this case, V (G)−V1

is totally covered by the monochromatic tree.

(b) Both Nr and Nb is respectively covered by a monochromatic tree in P.
In order to find a set of vertex disjoint monochromatic trees with minimum
size to cover the vertex set of G, we first try to find two sets of vertex dis-
joint monochromatic trees with minimum size, which respectively satisfies
property (a) and (b). Clearly, among these two sets, the one with minimum
size is, what we want, the set of vertex disjoint monochromatic trees with
minimum size which cover the vertex set of G. Clearly, the set with minimum
size satisfying property (a) is trivial. By employing a similar proof to that
of Theorem 3.3, we can find the set of vertex disjoint monochromatic trees
with minimum size satisfying property (b) in polynomial time. The rest of
the proof is omitted.
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