
On spanning trees and cycles of multicolored point sets

with few intersections

M. Kano∗, C. Merino†§, and J. Urrutia†‡

April 10, 2003

Abstract

Let P1, ..., Pk be a collection of disjoint point sets in <2 in general position. We
prove that for each 1 ≤ i ≤ k we can find a plane spanning tree Ti of Pi such that the
edges of T1, ..., Tk intersect at most (k − 1)(n− k) + (k)(k−1)

2 , where n is the number of
points in P1 ∪ ...∪Pk. If the intersection of the convex hulls of P1, ..., Pk is non empty,
we can find k spanning cycles such that their edges intersect at most (k − 1)n times,
this bound is tight. We also prove that if P and Q are disjoint point sets in general
position, then the minimum weight spanning trees of P and Q intersect at most 8n
times, where |P ∪ Q| = n (the weight of an edge is its length).

1 Introduction

Geometric graphs, that is graphs whose vertex set is a collection of points on the plane in
general position and its edges are straight line segments connecting pairs of vertices, have
received a lot of attention lately. Numerous problems in which we want to draw graphs on
the plane such that their vertices lie on the elements of a fixed point set have been studied.
Ramsey type problems in which we want to color the edges or vertices of a geometric graph
such that some specific forbidden subgraphs do not appear have also been explored. The
interested reader may consult a recent survey by J. Pach [9] containing many results in this
field.

In this paper we are interested in embedding problems of of geometric graphs on colored
point sets. These problems have been considered for some time now, for example in [1, 2]
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the problem of embedding trees and alternating paths on bicolored point sets is solved.
In [3, 4, 5] matching problems on colored point sets are studied. For two colored point sets
we are interested in obtaining matchings in which every edge has its endpoints of different
(or equal) color. A well known result states that given a colection P2n of 2n points in general
position, n blue, and n red, we can always match a blue with a red point in P2n such that the
line segments joining matched pairs of points do not intersect. For a recent survey dealing
with numerous problems on colored point sets see [6]. Problems in which instead of coloring
the vertices, we color the edges of geometric graphs, are studied in [7, 8].

Let Pn be a set with n points on the plane. A spanning tree of Pn is a connected geometric
graph with vertex set Pn containing exactly n − 1 edges. Let P and Q be disjoint point
set. Tokunaga, studied and solved the problem of finding spanning trees for P and Q with
the smallest possible number of edge intersections. It turns out that this number depends
only on the order in which the elements of P ∪Q appear in Conv(P ∪Q). More specifically,
let p0, ..., pr−1 be the points on Conv(P ∪ Q) in clockwise order, and let i be the number
of indexes j such that pj and pj+1 are one in P and the other in Q, addition taken mod r.
Then it is always possible to find spanning trees for P and Q such that their edges do not
intersect if i ≤ 2, otherwise they intersect exactly i−2

2
times. This implies for example that

if all the points on the convex hull are the same color, or all the points in P which belong
to the convex hull appear in consecutive order, then we can find spanning trees for P and Q

which do not intersect, regardless of how many or where the remaining points of P and Q

are.

In this paper we study the following problem: Let P1, ..., Pk be a family of disjoint point sets
such that P1∪ ...∪Pk is in general position. Find spanning trees for P1, ..., Pk such that their
edges have as few intersections as possible. In this paper we prove the following result:

Theorem 1 Let P1, ..., Pk be a collection of disjoint point sets. Then we can find for each

Pi a spanning tree Ti such that the total number of intersections among the edges of T1, ..., Tk

is at most (k − 1)(n − k) + (k)(k−1)
2

where |P1 ∪ ... ∪ Pk| = n. This bound is tight within a

factor of two from the optimal solution.

We also give similar results for spanning cycles of families of point sets P1, ..., Pk in which
Conv(P1) ∩ ... ∩ Conv(Pk) is non empty. Sharp bounds for this problem are obtained.

In the last section of this paper, we prove the following result that is of independent interest:
Let P and Q be disjoint point sets, then their euclidean minimum weight spanning trees
intersect at most 8n times. Using this we prove the following result: Let P1, . . . , Pk be
families of disjoint point sets such that P1 ∪ ...∪ Pk is in general position. For each Pi let Ti

be its euclidean minimum weight spanning tree, i = 1, ..., k. Then then the edges of these
trees intersect at most 8kn times.
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2 Spanning trees with few intersections

Given two disjoint point sets P1 and P2 it is not always possible to find spanning trees for
them such that their edges do not intersect. In fact if we have 2s points which are the
vertices of a convex polygon such that alternately they belong to P1 and P2, then it is easy
to verify that any spanning tree for P1 intersects any spanning tree for P2 at least s − 1
times, see Figure 1.

From here the following observation follows:

Observation 1 There are families of point sets P1, ..., Pk with |P1 ∪ ...∪Pk| = sk such that

their edges intersect at least
k(k−1)

2
(s − 1) times.

Figure 1: Two sets of points, each with six points such that any spanning tree of the set
with solid points intersects any spanning tree for the remaining points at least five times.

If we consider a similar problem for three or more point sets our problem becomes much
harder, even for points in convex position. Let P be a set of n = ks points in convex position
labelled p1, ..., psk. Split P into k subsets P1, ..., Pk such that the element pi+rk belongs to Pi,
r = 0, ..., s− 1. Finding for each Pi a spanning tree Ti, 1 ≤ i ≤ k, such such that their edges
have the fewest possible number of intersections is an interesting open problem. We now show
a set of spanning trees T1, ..., Tk such that their edges intersect at most ( 3

4
k2−k)(s−1)− k(k−2)

4

times if k is even; otherwise they intersect ( 3
4
(k − 1)2 + k−1

2
)(s − 1) − (k−1)2

4
times, i.e. the

number of times their edges intersect is at most 3
2

times that of the optimal solution.

For i ≤ bk
2
c, let Ti be the tree containing the edges joining pi+ak to pi+bk, a + b = s + 1

or a + b = s + 2, 1 ≤ a, b ≤ s. For i > b k
2
c, Ti, is the tree containing the edges joining

pi+ak to pi+bk, a + b = s or a + b = s + 1, 1 ≤ a, b ≤ s. Notice that two trees Ti and Tj

intersect s− 1 times if i ≤ bk
2
c < j; otherwise they intersect 2(s− 1)− 1 = 2s− 3 times. See

Figure 2. Therefore these trees intersect exactly ( 3
4
k2 − k)(s − 1) − k(k−2)

4
if k is even; and

(3
4
(k)2 + k−1

2
)(s − 1) − (k−1)2

4
if k is odd. Moreover we believe that this configuration is, in

fact, close to the optimal solution for point sets in convex position.
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Figure 2: On the left hand side we have Ti, i ≤ bk
2
c, with solid lines and Tj, j > bk

2
c, with

dashed lines; s = 8 so, they intersect 7 times. On the right hand side we have Ti and Tj,
i, j ≤ bk

2
c; as s = 9, they intersect 15 times.

We proceed now to study our problem for point sets in general position. Suppose w.l.o.g.
that the points in P1∪ ...∪Pk have different x-coordinates, and |Pi| ≥ 2, i = 1, ..., k. Assume
that for every i the elements of Pi are labeled pi,1, pi,2, . . . , pi,ri

such that if r < s then the
x-coordinate of pi,r is smaller than the x-coordinate of pi,s. Let Ti be the path with vertex
set Pi in which pi,j is connected to pi,j+1 by an edge denoted by ei,j, j = 1, . . . , ri − 1. See
Figure 3.

Figure 3: A colection of four point sets and their spanning trees. The point sets are the
vertices of our trees, which turn out to be paths.

Lemma 1 The edges of Ti and Tj intersect at most ri + rj − 3 times.

Proof: Our result is clearly true if ri + rj ≤ 4, or one of Ti or Tj has exactly one edge.
Suppose now that the x coordinate of pi,2 is smaller than that of pj,2. Then the edge ei,1 of
Ti joining pi,1 to pi,2 intersects at most one edge of Tj, namely the edge ej,1 joining pj,1 to
pj,2. Remove pi,1 from pi, and by induction our result follows.

In a similar way we can prove:
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Lemma 2 The edges of T1, . . . , Tk intersect at most (k − 1)(n − k) + (k)(k−1)
2

times, where

|P1 ∪ ... ∪ Pk| = n

Proof: Our result is true if T1, ..., Tk have together at most k edges, in fact in this case if
all of them intersect each other, their total number of intersections is (k)(k−1)

2
. Suppose then

that our trees contain more than k edges, and let ei,1 be such that the x-coordinate of pi,2

is smaller than the x-coordinate of pj,2, i 6= j, 1 ≤ j ≤ k. Then the edge ei,1 joining pi,1 to
pi,2 intersects at most k − 1 edges, i.e., in each Tj ei,1 intersects at most the edge ej,1 joining
pj,1 to pj,2, j 6= i. Removing this edge, and pi1 from Pi, and proceeding by induction on
P1, . . . , Pi − {pi,1}, . . . , Pk our result follows.

Observe that the bound determined in Lemma 2 is within a factor of two of that in Obser-
vation 1. Theorem 1 follows directly from Observation 1 and Lemma 2.

3 Spanning Cycles

We now study the following problem: Let P1, ..., Pk be a family of disjoint point sets such
that Conv(P1) ∩ ... ∩ Conv(Pk) 6= ∅. Find a family of spanning cycles Ci, ..., Ck of P1, ..., Pk

respectively with few intersections. We prove:

Theorem 2 Let P1, ..., Pk be disjoint point sets such that Conv(P1) ∩ ... ∩ Conv(Pk) 6= ∅.
Then for each Pi we can find a cycle Ck which covers the vertices of Pi such that the edges

of all cycles Ci, ..., Ck intersect at most (k − 1)n times. Our bound is optimal.

Proof: Let q be a point in the interior of Conv(P1) ∩ ... ∩ Conv(Pk). For each Pi define a
cycle C

q
i as follows: Sort the elements of Pi around q in the counterclockwise order according

to their slope and label them pi,1, ..., pi,ri
(see Figure 4(a)).

A straightforward modification to our counting argument in Lemma 2 shows that the edges
of C1, ..., Ck intersect at most (k−1)n times. To show that our bound is tight, choose n = kr,
and choose kr points on a unit circle labeled p1, ..., pkr, and let Pi = {pi+ks : k = 0, ..., r−1}.
It is easy to see that the (unique) cycles Ci that cover the vertices of each Pi, i = 1, ..., k
intersect (k − 1)(kr) = (k − 1)n times, see Figure 4(b).
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4 Minimum weight spanning trees

The euclidean minimum weight spanning tree of a point set Pn is a tree with vertex set Pn

such that the sum of the lengths of its edges is minimized. In this section we prove that
if P1, ..., Pk are disjoint point sets and T1, ..., Tk are their corresponding euclidean minimum
weight spanning trees then the total number of intersections among their edges is at most
8(k − 1)(n − k) where |P1 ∪ ... ∪ Pk| = n. Our proof is based on the following observation
that is easy to prove: Let Ti and Tj be the minimum weight spanning trees of Pi and Pj.
Let e be any edge of Ti. Then there is a constant c such that e intersects at most c edges
of Tj whose length is grater than or equal to the length of e. It follows that the edges of Ti

and Tj intersect a linear number of times. In fact, we can prove that c is at most 8, however
the proof is long, tedious, and unenlightening. We skip the details, they can be supplied by
the authors upon request. Summarizing we have:

Lemma 3 Let T1 and T2 be the minimum weight spanning trees of two point sets P1 and

P2, and e any edge of T1. Then e intersects at most 8 edges of T2 whose length is greather

than or equal to the lenght of e.

We now prove:

Theorem 3 Let T1, ..., Tk be respectively the minimum weight spanning trees of k point sets

P1, ..., Pk such that |P1 ∪ ... ∪ Pk| = n. Then the edges of T1, ..., Tk intersect at most 8(k −
1)(n − k) times.
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Proof: Observe first that since |P1∪ ...∪Pk| = n, T1, ..., Tk have exactly n−k edges. Let us
construct the intersection graph H of the set of edges of T1, ..., Tk, that is the graph whose
vertex set is the set of all edges of T1, ..., Tk, two of which are adjacent if they intersect.
Orient the edges of this graph as follows: If two edges e ∈ Ti and e ∈ T ′

j intesect and e is
longer than e′ orient the edge in H joining them from e to e′, see Figure 5.
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Figure 5: The intersection graph of three minimum weight spanning trees.

By Lemma 6 every edge in Ti intersects at most 8 edges in each Tj, i 6= j which are the same
lenght or longer than itself. Thus the out-degree of each vertex of H is at most 8(k − 1).
Our result follows.

Observe that for the case when we have two point sets P and Q such that |P ∪ Q| = n,
our previous results implies that the edges of their minimum weight spanning trees intersect
at most 8(n − 2) times. This bound is far from optimal. In fact we have been unable to
produce examples in which the minimum weight spanning trees of P and Q intersect more
than 2n − 4 times. An example is constructed as follows: P consists of 3 points r, s, t such
that r and s are equidistant from t, and the angle ∠rts is slightly bigger than π

3
. The points

of Q lie on a zig-zag polygonal such that each second segment of it is parallel, and the angle
between two consecutive segments is π

2
as shown in Figure 6.

We conclude by posing the following question:

Open problem 1 Is it true that the edges of the minimum weight spanning trees of any

two point sets P and Q such that |P ∪ Q| = n intersect at most 2n − c times, c a constant?
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Figure 6: P has 3 points, and Q 5. The number of elements of Q can be increased to n− 3,
n ≥ 4. The number of edge intersections of the minimum weight spanning trees of P and Q

is 2n − 4.
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