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Abstract

The tree partition number of an r-edge-colored graph G, denoted by tr(G), is the
minimum number k such that whenever the edges of G are colored with r colors, the
vertices of G can be covered by at most k vertex-disjoint monochromatic trees. We
determine t2(K(n1, n2, . . . , nk)) of the complete k-partite graph K(n1, n2, . . . , nk).
In particular, we prove that t2(K(n,m)) = �(m − 2)/2n� + 2, where 1 ≤ n ≤ m.

1 Introduction

We consider finite graphs without loops or multiple edges. The complete k-partite graph
K(n1, n2, . . . , nk) has the vertex set V1 ∪ V2 ∪ · · · ∪ Vk such that Vi ∩ Vj = ∅ and |Vi| = ni

for every 1 ≤ i < j ≤ k, and the edge set {xixj | xi ∈ Vi, xj ∈ Vj, 1 ≤ i < j ≤ k}. We
often denote by K(n, m) the complete bipartite graph with partite sets X and Y , where
|X | = n and |Y | = m.

The tree partition number of an r-edge-colorings of a graph G, denoted by tr(G), which
was introduced by Erdös, Gyárfás and Pyber [1], is the minimum k such that whenever
the edges of G are colored with at most r colors, the vertices of G can be covered by at
most k vertex-disjoint monochromatic trees. Moreover it was conjectured in [1] that the
tree partition number of an r-edge-colored complete graph is r − 1.

It is well-known that either a graph or its complement is connected. This is equivalent
to the fact that every 2-edge-colored complete graph has a monochromatic spanning tree,
which implies that t2(Kn) = 1, and thus the conjecture is true for r = 2. The conjecture
was proved for r = 3 in [1]. Recently Haxell and Kohayakawa [2] obtained the following
Theorem A, which implies that tr(Kn) ≤ r if n is sufficiently large.
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Theorem A ([2]). The vertex set of the complete graph Kn whose edges are colored
with r colors can be covered by at most r vertex-disjoint monochromatic trees with different
colors provided n ≥ 3r4r!(1− 1/r)3(1−r) log r.

It is mentioned in [3] that the following theorem can be proved by similar arguments
given in [2].

Theorem B ([3]). If n is sufficiently large, tr(K(n, n)) ≤ 2r.

For related results of Ramsey partitioning type, see [4],[5].

When we consider 2-edge-colored graphs, we always assume that all their edges are
colored red or blue. So a monochromatic tree of 2-edge-colored graph can be called a red
tree or a blue tree.

In this paper we first consider t2(K(n1, N2, . . . , nk)), and prove the following theorem
in section 2.

Theorem 1. Let n1, n2, . . . , nk (2 ≤ k) be integers such that 1 ≤ n1 ≤ n2 ≤ · · · ≤ nk,
and let n = n1 + n2 + · · ·+ nk−1 and m = nk. Then

t2(K(n1, n2, . . . , nk)) =

⌊
m − 2

2n

⌋
+ 2. (1)

Note that K(1, 1, . . . , 1) (i.e. nk = 1) is isomorphic to a complete graph, and so it has
a monochromatic spanning tree. On the other hand, the right side of (1) is equal to one
as �(m − 2)/2n� = −1.

Next we consider a related problem. Every complete multipartite graph that is not a
complete graph has two non-adjacent vertices x and y. If all the edges incident with x are
colored red and all the edges incident with y are colored blue, then such a 2-edge-colored
complete multipartite graph has no monochromatic spanning trees. Therefore, in order
to guarantee the existence of monochromatic spanning tree in a 2-edge-colored complete
multipartite graph G, it is necessary to assume that for every vertex v of G, at least one
red edge and at least one blue edge are incident with v. However this is not sufficient.
Consider a complete bipartite graph K(n, m) (2 ≤ n ≤ m) with partite sets X and Y ,
and choose two vertices x ∈ X and y ∈ Y . If the edge xy and all the edges joining X − x
to Y − y are colored red and all the other edges are colored blue, then K(n, m) has no
monochromatic spanning trees.

Our second theorem shows that the bipartite case is exceptional.

Theorem 2. Let k ≥ 3 be an integer. If the edges of the complete k-partite graph
K(n1, n2, . . . , nk) are colored red or blue in such a way that for every vertex v, at least
one red edge and at least one blue edge are incident with v, then K(n1, n2, . . . , nk) has a
monochromatic spanning tree.

We prove Theorem 2 in section 3.

2



2 Proof of Theorem 1

For a graph G, we denote by V (G) and E(G) the set of vertices and the set of edges of
G, respectively. An edge joining a vertex x to a vertex y is denoted by xy or yx. For two
disjoint sets X and Y of vertices of a graph G, we denote by E(X, Y ) the set of edges
of G joining a vertex in X to a vertex in Y , in fact, in all our proofs we use E(X, Y ) to
denote something stronger: the complete bipartite graph with vertex classes X and Y ,
which is in every case a subgraph of the graph we are considering. For a set X of vertices
of G, we denote by 〈X〉 the subgraph of G induced by X. For a subgraph H and a set X
of vertices of G, we say that H covers X or X is covered by H if X ⊆ V (H).

In order to prove Theorem 1, we need three lemmas.

Lemma 1. Let k ≥ 3 be an integer, and {n1, n2, . . . , nk} be a set of positive integers such
that nk ≥ ni for all 1 ≤ i ≤ k − 1 and n1 + n2 + · · · + nk−1 > nk ≥ 2. Then the set of
indices {1, 2, . . . , k} can be partitioned into two disjoint subsets I ∪ J so that

n ≤ m ≤ 2n + 1, where n =
∑
i∈I

ni and m =
∑
j∈J

nj .

In particular, the complete k-partite graph K(n1, n2, . . . , nk) contains a spanning complete
bipartite graph K(n, m) such that n ≤ m ≤ 2n + 1.

Proof. Without loss of generality, we may assume that n1 ≤ n2 ≤ · · · ≤ nk. Take an
integer t (1 ≤ t ≤ k − 2) such that

nt + nt+1 + nt+2 + · · ·+ nk−1 > nk + n1 + n2 + · · ·+ nt−1 and

nt+1 + nt+2 + · · ·+ nk−1 ≤ nk + n1 + n2 + · · ·+ nt−1 + nt.

Let a = nt, b = nt+1 + · · ·+ nk−1 and c = nk + n1 + n2 + · · ·+ nt−1. Then

a ≤ b, 2 ≤ nk ≤ c < a + b and b ≤ a + c.

It suffices to show that b ≤ a + c ≤ 2b + 1 or c < a + b ≤ 2c + 1 by letting either n = b
and m = a + c or n = c and m = a + b.

If b ≤ 2, then a + b ≤ b + b ≤ 4 ≤ 2c + 1. Therefore we may assume that b ≥ 3. It
is easy to prove that 2x + 1 ≥ 3x for x ≥ 3. Hence 2b + 1 ≥ 3b ≥ a + a + b > a + c.
Consequently the lemma is proved.

The following Lemmas 2 and 3, which determine t2(K(n, m)), are essential parts of
the proof of Theorem 1.

Lemma 2. Let n and m be integers such that 1 ≤ n ≤ m. Then the vertices of 2-edge-
colored complete bipartite graph K(n, m) can be covered by at most⌊

m − 2

2n

⌋
+ 2 (2)

vertex-disjoint monochromatic trees.
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Proof. Let X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , ym} be the partite sets of
K(n, m). Suppose that all the edges of K(n, m) are colored red or blue. For an n-tuple
(a1, . . . , an) such that ai ∈ {r, b} for every i, we define

Y (a1, a2, . . . , an) = {y ∈ Y | yxi is red or blue according as ai = r or ai = b}.
In particular, Y (r, r, . . . , r) and Y (b, b, . . . , b) denote the sets of vertices y ∈ Y such that
all the edges incident with y are red or blue, respectively. We abbreviate Y (r, r, . . . , r)
to Y (r) and Y (b, b, . . . , b) to Y (b). Similarly, we denote by X(r) and X(b) the sets of
vertices in x ∈ X such that all the edges incident with x are red or blue, respectively.

We begin with an observation on (a1, a2, . . . , an), which will be often used. If there
exists an n-tuple (a1, a2, . . . , an) such that Y (a1, a2, . . . , an) = ∅, as = r and at = b for
some s �= t, then by letting Xr = {xi ∈ X | ai = r} � xs and Xb = {xi ∈ X | ai = b} � xt,
Y can be partitioned into

Y = Yr ∪ Yb, Yr ∩ Yb = ∅, (3)

where the two subsets Yr and Yb are defined as

Yr = {y ∈ Y | yxi is red for some xi ∈ Xb},
Yb = {y ∈ Y | yxi is blue for all xi ∈ Xb, and yxj is blue for some xj ∈ Xr}.

It is clear that Yr ∩ Yb = ∅ and Y − (Yr ∪ Yb) = Y (a1, a2, . . . , ar) = ∅, and thus the
partition given in (3) is well-defined. (see Figure 1)

Y

red edge

blue edge

X

Xr={  } Xb={  }

x1 x2 x3 x4 x5

Y(r,r,b,r,b) Yb Yr

X

Y

Figure 1: Y (a1, . . . , a5), Yr and Yb for (a1, . . . , a5) = (r, r, b, r, b)

We consider four cases.

Case 1. Y (r) �= ∅, Y (b) �= ∅, and for some other n-tuple (a1, a2, . . . , an),
Y (a1, a2, . . . , an) = ∅.

For the n-tuple (a1, a2, . . . , an) with Y (a1, a2, . . . , an) = ∅, we get the partition (3).
Then Y (r) ⊆ Yr and Y (b) ⊆ Yb, and the induced subgraph 〈Yr ∪Xb〉 contains a spanning
red tree Tr, and the induced subgraph 〈Yb ∪Xr〉 contains a spanning blue tree Tb. Hence
the set of vertices of K(n, m) is covered by two monochromatic trees Tr and Tb.
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Case 2. Either Y (r) = ∅ and Y (b) �= ∅, or Y (r) �= ∅ and Y (b) = ∅.
Without loss of generality, we may assume that Y (r) = ∅ and Y (b) �= ∅. Since

Y (r) = ∅, it follows that for every vertex y ∈ Y , at least one blue edge is incident with y.
By Y (b) �= ∅, it is immediate that K(n, m) has a blue spanning tree.

Case 3. Y (r) = Y (b) = ∅.
In this case, for every vertex y ∈ Y , at least one red edge and at least one blue

edge are incident with y. We first assume X(r) = X(b) = ∅, that is, we assume that
for every vertex x ∈ X, at least one red edge and at least one blue edge are incident
with x. Let H be the subgraph of K(n, m) induced by the red edges of K(n, m). Since
V (H) = V (K(n, m)), we may assume that H is not connected. Let C be a component
of H . Then C covers neither X nor Y since otherwise H must contain a spanning tree of
K(n, m), which is a contradiction.

Put

A = X ∩ V (C), P = X − A, B = Y ∩ V (C), Q = Y − B.

Then each of the above four vertex sets is a non-empty set, and all the edges in E(A, Q)∪
E(P, B) are blue, and thus the vertices of K(n, m) can be covered by two blue trees.

If either X(r) = ∅ and X(b) �= ∅, or X(r) �= ∅ and X(b) = ∅, then we can find a blue
spanning tree or a red spanning tree of K(n, m), respectively.

We finally assume X(r) �= ∅ and X(b) �= ∅. For an m-tuple (a1, a2, . . . , am) (ai ∈
{r, b}), we define

X(a1, a2, . . . , am) = {x ∈ X | xyi is red or blue according as ai = r or ai = b}.

Then since n ≤ m < 2m, for some m-tuple (a1, . . . , am), X(a1, . . . , am) = ∅. Hence by
the same argument as in the proof of Case 1, we can show that the vertices of K(n, m)
can be covered by a red tree and a blue tree which are vertex-disjoint.

Case 4. For every n-tuple (a1, . . . , an), Y (a1, . . . , an) �= ∅.
Let Z be the set of all Y (a1, . . . , an), t′ = min{|V | | V ∈ Z \ {Y (r), Y (b)}}, and

t = min{|Y (r)|−1, |Y (b)|−1, t′}. Since |Z| = 2n and the union of all the sets Y (a1, . . . , an)
is equal to Y , we have

t ≤
⌊

m − 2

2n

⌋
. (4)

If t = |Y (r)| − 1, then K(n, m) − Y (r) has a blue spanning tree since Y (b) �= ∅ and
for every vertex y ∈ Y − Y (r), there is at least one blue edge incident with y. Therefore
V (K(n, m)) can be covered by t + 1 isolated vertices in Y (r) and one blue tree, which
implies the lemma holds. Thus we may assume that t �= |Y (r)| − 1, |Y (b)| − 1.

Suppose that t = |Y (a1, . . . , an)|, where (a1, . . . , an) �= (r, r, . . . , r), (b, b, . . . , b). Then
K(n, m) − Y (a1, . . . , an) satisfies the condition of Case 1, and hence the vertices of
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K(n, m)− Y (a1, . . . , an) are covered by two vertex-disjoint monochromatic trees. There-
fore V (K(n, m)) can be covered by t vertex-disjoint isolated vertices in Y (a1, . . . , an) and
two monochromatic trees of K(n, m) − Y (a1, . . . , an), which implies the lemma holds.
Consequently the lemma is proved.

Lemma 3. We can color all the edges of the complete bipartite graph K(n, m) (1 ≤ n ≤
m) red or blue so that the vertices of the resulting 2-edge-coloredK(n, m) cannot be covered
by fewer than �(m − 2)/2n�+ 2 vertex-disjoint monochromatic trees.

Proof. If n = 1, then K(1, m) is a star, and �(m − 2)/2n�+ 2 = �m/2�+ 1. We can
color �m/2� edges red and �m/2� edges blue, which implies the lemma holds. Thus we
may assume 2 ≤ n.

Let X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , ym} be the bipartite sets of K(n, m).
Let k ≥ 0 be an integer such that k2n + 2 ≤ m < (k + 1)2n + 2. Then it suffices to show
that there exists an edge-coloring of K(n, m) for which the vertices of K(n, m) cannot be
covered by k + 1 vertex-disjoint monochromatic trees.

We color all the edges of K(n, m) red or blue so that k + 1 ≤ |Y (r, r, . . . , r)| ≤
|Y (b, b, . . . , b)| ≤ k + 2, and for every (a1, . . . , an) �= (r, r, . . . , r), (b, b, . . . , b), k ≤
|Y (a1, . . . , an)| ≤ k + 1. Note that the number of n-tuples (a1, . . . , an) is 2n, and thus
the above edge-coloring exists.

Assume that V (K(n, m)) can be covered by k+1 vertex-disjoint monochromatic trees
T1, T2, . . . , Tk+1, where T1, . . . , Ts are trees of order one (i.e., Ti consists of one vertex and
no edge) and Ts+1, . . . , Tk+1 are trees of order at least two. Set F = {T1, T2, . . . , Tk+1}
and F ′ = {Ts+1, . . . , Tk+1}.

Let S = V (T1)∪V (T2)∪ . . .∪V (Ts), Sx = S∩X and Sy = S∩Y , where |S| = s. Then
F ′ is a set of k+1− s vertex disjoint monochromatic trees, which cover V (K(n, m))−S.
Let Vr and Vb denote the subsets of X − Sx covered by the red trees and by the blue
trees of F ′, respectively. Define the n-tuple (a1, a2, . . . , an) by ai = r if xi ∈ Vb ∪ Sx and
ai = b otherwise. It is easy to see that Y (a1, a2, . . . , an) must be contained in Sy, and so
k ≤ |Y (a1, a2, . . . , an)| ≤ |Sy|.

Hence |F ′| + |Sx| = |F | − |Sy| = k + 1 − |Sy| ≤ k + 1 − k = 1. This inequality
implies that Vr = ∅ or Vb = ∅. Without loss of generality, we may assume Vr = ∅. Then
(a1, a2, . . . , an) = (r, r, . . . , r), Y (r, r, . . . , r) ⊆ Sy and k + 1 ≤ |Y (r, r, . . . , r)|. This
implies |F ′|+ |Sx| = |F | − |Sy| = k+1− |Sy| ≤ k+1− (k+1) = 0, and hence |F | = |Sy|.
This is a contradiction.

We are now ready to prove Theorem 1.

Proof of Theorem 1. By Lemmas 2 and 3, we may restrict ourselves to complete
multipartite graphs K(n1, n2, . . . , nk) with k ≥ 3. Let n = n1 + n2 + · · · + nk−1 and
m = nk.

If nk = 1, then �(m − 2)/2n�+2 = 1. K(n1, n2, . . . , nk) = K(1, 1, . . . , 1) is isomorphic
to a complete graph, and so it has a monochromatic spanning tree. Thus we may assume
2 ≤ nk.
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We first prove that the set of vertices of 2-edge-colored K(n1, n2, . . . , nk) is covered
by at most �(m − 2)/2n�+ 2 vertex-disjoint monochromatic trees.

Suppose that n1 + n2 + · · · + nk−1 > nk ≥ 2. Then �(m − 2)/2n� + 2 = 2. By
Lemma 1, K(n1, n2, . . . , nk) has a spanning complete bipartite graph K(n′, m′) such that
n′ ≤ m′ ≤ 2n′

+1. Then by Lemma 2, the vertices of K(n′, m′) can be covered by at most
two vertex-disjoint monochromatic trees. Hence we may assume that n = n1 + n2 + · · ·+
nk−1 ≤ m = nk.

It is obvious that K(n1, n2, . . . , nk) has a spanning complete bipartite graph K(n, m).
By Lemma 2, the set of vertices of K(n, m) can be covered by at most �(m − 2)/2n�+ 2
vertex-disjoint monochromatic trees, and so can K(n1, n2, . . . , nk).

We next prove that there exists a 2-edge-coloring of K(n1, n2, . . . , nk) such that the
set of vertices of K(n1, n2, . . . , nk) cannot be covered by fewer than �(m − 2)/2n� + 2
vertex-disjoint monochromatic trees.

Since nk ≥ 2, we can easily color all the edges of K(n1, n2, . . . , nk) red or blue so that
the resulting graph has no monochromatic spanning trees. Thus the required statement
mentioned above holds if �(m−2)/2n� = 0. Hence we may assume that �(m−2)/2n� ≥ 1.

It is obvious that K(n1, n2, . . . , nk) has a spanning complete bipartite graph K(n, m)
with partite sets V1 ∪ . . . ∪ Vk−1 = X and Vk = Y . We color all the edges of K(n, m) in
the same way as given in the proof of Lemma 3, and all the edges of K(n1, n2, . . . , nk)
not contained in K(n, m) red. Then we apply the same arguments as in the proof of
Lemma 3. The condition that there are no edges in X is not necessary for the proof of
Lemma 3. Consequently the set of vertices of the 2-edge-colored K(n1, n2, . . . , nk) cannot
be covered by fewer than �(m−2)/2n�+2 vertex-disjoint monochromatic trees, and hence
the theorem is proved.

3 Proof of Theorem 2

We simplify notation by denoting by G the complete k-partite graph K(n1, n2, . . . , nk)
with partite sets V1, V2, . . . , Vk, where k ≥ 3. Suppose that all the edges of G are colored
red or blue in such a way that for every vertex v, at least one red edge and at least one
blue edge are incident with v.

Let H be the subgraph of G induced by the set of red edges of G. Then H is a
spanning subgraph of G, and we may assume that H is not connected since otherwise H
contains a red spanning tree of G. Let D be a component of H . Then there exist at least
two partite sets, say Va and Vb, which are not covered by D since if k − 1 partite sets
are covered by D, then every edge incident with a vertex not contained in V (D) must
be blue, which contradicts the assumption that for every vertex, at least one red edge is
incident with it. Let

A = Va ∩ V (D) �= Va, S = Va − A �= ∅, B = Vb ∩ V (D) �= Vb

T = Vb − B �= ∅, X = V (D)− (A ∪ B), Y = V (G)− (Va ∪ Vb ∪ V (D)).

(see F igure 2)
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Figure 2: Covering by D

Then since all the edges of G joining a vertex in V (D) to a vertex in V (G) − V (D)
are blue, all the edges contained in

E(X, S ∪ T ) ∪ E(A ∪ B, Y ) ∪ E(B, S) ∪ E(A, T )

are blue. Thus if A ∪ B �= ∅ and X �= ∅, then G has a blue spanning tree. So we may
assume that A ∪ B = ∅ or X = ∅.

Suppose first X = ∅. Then since V (D) = A ∪ B �= ∅ and D has at least one edge, it
follows that A �= ∅ and B �= ∅. Hence G has a blue spanning tree.

We next assume X �= ∅. Then A∪B = ∅. Let Vc be a partite set such that Vc∩V (D) �=
∅ and Vc �= Va, Vb. Let C = Vc ∩ V (D) �= ∅ and U = Vc −C = Vc ∩ Y . Then all the edges
in E(Va ∪ Vb, X) ∪E(X −C, U) ∪E(C, Y − U) are blue. Thus if X −C �= ∅, then G has
a blue spanning tree, and so we may assume X − C = ∅, which implies V (D) ⊆ V (Vc).
This is a contradiction since D has no edges. Consequently the theorem is proved.
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