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Abstract

We consider the following problem: For given two sets of red points and blue
points in the plane respectively, we want to cover all these points with disjoint non-
crossing alternating geometric paths of the same length. Determine the length of a
path for which the above covering always exists under a trivial necessary condition
on the numbers of red points and blue points. We give a complete solution to this
problem.

1 Introduction

A graph drawn in the plane is called a geometric graph if every edge is a straight-line
segment, and said to be non-crossing if it has no crossings. It is well-known ([8]) that
for given k red points and k blue points in the plane in general position, there exist a
non-crossing geometric alternating perfect matching on these red and blue points, that is,
there exist k disjoint straight-line segments that connect red points and blue points and
have no crossings. Note that red and blue points are said to be in general position if no
three their points lie on the same line.

We generalize the above problem by considering paths since a matching is a path of
length one. A path with order n and length n− 1 is denote by Pn, and a path drawn in
the plane is called an alternating path if it passes through alternately red points and blue
points. We consider the following problem: For any given red and blue points in the plane
in general position, do there exist disjoint non-crossing geometric alternating paths Pn’s
that cover all the red and blue points under a trivial necessary condition on the numbers
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of red points and blue points (Figure 1 (b)) ? For convenience, we briefly say that there
exists a Pn-covering if there exist such disjoint paths Pn’s. In this paper, we prove the
following theorem, which gives a complete solution to the above problem.

Theorem 1 Let g and h denote non-negative integers. If n is an even integer such that
2 ≤ n ≤ 14, then for any given (n/2)g red points and (n/2)g blue points in the plane in
general position, there exists a Pn-covering. If n is an odd integer such that 3 ≤ n ≤ 11,
then for any given �n/2�g + �n/2�h red points and �n/2�g + �n/2�h blue points in the
plane in general position, there exists a Pn-covering.

Moreover, for any integer n such that n = 13 or n ≥ 15, there exists a configuration
with �n/2� red points and �n/2� blue points for which there exists no Pn-covering.

In order to prove the above Theorem 1, we prove the next theorem, which is a new
balanced subdivision theorem of two sets of points in the plane.

Theorem 2 Let m ≥ 1, g ≥ 0 and h ≥ 0 be integers such that g + h ≥ 1. Let R be a
set of mg + (m + 1)h red points and B a set of (m + 1)g + mh blue points in the plane
such that no three points of R ∪ B lie on the same line. Then there exists a subdivision
X1 ∪ · · · ∪ Xg ∪ Y1 ∪ · · · ∪ Yh of the plane into g + h disjoint convex polygons such that
every Xi (1 ≤ i ≤ g) contains exactly m red points and m + 1 blue points and every
Yj (1 ≤ j ≤ h) contains exactly m + 1 red points and m blue points (Figure 1 (a)).

:Red point :Blue point (a) A balanced subdivision (b)  A P5-covering

Figure 1: A subdivision given in Theorem 2 with m = 2, g = 2, h = 3, and a P5-covering.

It should be remarked that the above theorem 2 cannot be generalized to partitions
for two positive integers m and k with k ≥ m + 2. Namely, if kt + mt red points and
mt + kt blue points alternately lie on a circle in the plane for any integer t ≥ 1, then we
cannot subdivide the plane into g+h disjoint convex polygons X1∪· · ·∪Xg ∪Y1∪· · ·∪Yh

so that every Xi (1 ≤ i ≤ g) contains exactly m red points and k blue points and every
Yj (1 ≤ j ≤ h) contains exactly k red points and m blue points

We now explain a sketch of the proof of Theorem 1. Suppose first n is even. If there
exists a Pn-covering of given red and blue points in the plane, then the number of red
points must be equal to that of blue points, and its number is expressed as (n/2)g for
some integer g ≥ 1. Conversely, if (n/2)g red points and (n/2)g blue points are given
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for some integer g ≥ 1, then by Theorem 3, which will given in the next section, we can
divide the plane into g convex polygons so that each polygon contains exactly n/2 red
points and n/2 blue points. Thus if we can show that for every arrangement of n/2 red
points and n/2 blue points in the plane in general position, there exists a Pn-covering,
then we can say that there exist a Pn-covering of the given red and blue points, and the
problem is affirmatively solved.

Similarly, if n is odd, then a trivial necessary condition for the existence of Pn-covering
is that the number of red points and that of blue points are expressed as �n/2�g+ �n/2�h
and �n/2�g + �n/2�h, respectively, for some non-negative integers g and h. Conversely,
if such numbers of red points and blue points are given in the plane in general position,
then by Theorem 2, we can divide the plane into g + h convex polygons so that each
polygon contains either �n/2� red points and �n/2� blue points or �n/2� red points and
�n/2� blue points. Therefore if we can show for every arrangement of �n/2� red points
and �n/2� blue points in the plane in general position, there exists a Pn-covering, then
the problem is affirmatively solved.

However, when n = 13 or n ≥ 15, there exist configurations of �n/2� red points and
�n/2�blue points for which there exists no Pn-covering, and these configurations are shown
in Figure 2 (a), (c) and (d).

(a)  n=13 (b)  n=14
(c)  n=2k+7=odd

2 red points

3 blue 
points

k+2 red points

k blue 
points

(d)  n=2k+6=even 

2 red points

4 blue 
points

k+2 red points

k blue 
points

Figure 2: (a) A configuration of 13 points having no P13-covering; (b) A configuration of
14 points having a P14-covering; (c)+(d) Configurations of 15 or more points having no
Pn-covering.

2 Proofs of Theorems

For convenience, we call a region in the plane whose boundary consists of straight-line
segments a polygon even if it is an infinite region. For example, Figure 2 (a) illustrates a
subdivision of the plane into five convex polygons.

The following Theorem 3, which was conjectured in [5] and proved for n = 1, 2 in [5]
and [6], was recently completely proved by Bespamyatnikh, Kirkpatrick and Snoeyink [2],
Sakai [9] and by Ito, Uehara and Yokoyama [4] independently. Note that this theorem
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with g = 2 is equivalent to the famous Ham-sandwich Theorem for the plane. Moreover,
interesting results related to the next theorem can be found in [1].

Theorem 3 ([2], [9], [4]) Let a ≥ 1, b ≥ 1 and g ≥ 2 be positive integers. Let R be a
set of ag red points and B a set of bg blue points in the plane such that R ∪ B consists
of points in general position. Then there exists a subdivision X1 ∪ X2 ∪ · · · ∪ Xg of the
plane into g disjoint convex polygons such that every Xi contains exactly a red points and
b blue points.

Before giving proofs, we introduce some definitions and notation. We deal only with
directed lines in order to define the right side of a line and the left side of it. Thus a
line means a directed line. A line l dissects the plane into three pieces: l and two open
half-planes right(l) and left(l), where right(l) and left(l) denote the open half-planes
which are on the right side and the left side of l, respectively. Let r1 and r2 be two rays
emanating from the same point p. Then we denote by right(r1)∩ left(r2) the open region
that is swept by the ray being rotated clockwise around p from r1 to r2, and does not
contain the point p (see Figure 3). Similarly the open region left(r1) ∩ right(r2) can
be defined, and r1 ∪ r2 dissects the plane into three pieces: r1 ∪ r2 and two open regions
right(r1)∩left(r2) and left(r1)∩right(r2). If the internal angle � r1pr2 is less than π, then
we call right(r1) ∩ left(r2) the wedge defined by r1 and r2, and denote it by wedge(r1r2)
or wedge(r2r1). For a line li with suffix i, we define l∗i as the line lying on li and having
the opposite direction of li.

left(l)
right(l)

l r1

r2

   wedge(r1r2)
=wedge(r2r1)

right(r1) left(r2)

li li*

p

Figure 3: Open regions right(l), left(l) and left(r1) ∩ right(r2), and a wedge
wedge(r1r2) = wedge(r2r1).

Hereafter, R and B always denote two disjoint sets of red points and blue points in
the plane, respectively, such that no three points of R ∪B lie on the same line.

Theorem 4 (The Ham-sandwich Theorem [3]) For R and B, there exists a line l
such that |left(l) ∩ R| = |right(l) ∩ R|, |l ∩ R| ≤ 1, |left(l) ∩ B| = |right(l) ∩ B| and
|l ∩ B| ≤ 1.

The line l given in the above theorem is called a bisector of R ∪ B, and we say that
R ∪ B is bisected by l. It is clear that if both |R| and |B| are even, then the bisector l
passes through no red point and no blue point. The following Lemma 5 is known, and its
distinct proofs are found in [5] and [2].
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Lemma 5 For R and B, if there exist two lines l1 and l2 such that |left(l1) ∩ R| =
|left(l2) ∩ R| and |left(l1) ∩B| ≤ k ≤ |left(l2) ∩B|, then there exists a line l3 such that
|left(l3)∩R| = |left(l1)∩R|, |left(l3)∩B| = k and l3 passes through no point in R∪B.

The following theorem, called the 3-cutting Theorem, plays an important role. This
theorem was proved by Bespamyatnikh, Kirkpatrick and Snoeyink [2] under the assump-
tion that

g1

h1

=
g2

h2

=
g3

h3

.

However this condition can be removed without changing the arguments in the proof given
in [2]. This relaxation is necessary to prove our Theorem 2. Note that similar results,
which seems to be essentially equivalent to the original 3-cutting Theorem, were obtained
in [9] and [4], respectively.

Theorem 6 (The 3-cutting Theorem [2]) Let g1, g2, g3, h1, h2, h3 be positive integers
such that |R| = g1 + g2 + g3 and |B| = h1 + h2 + h3. Suppose that one of the following
statements (i) or (ii) is true:

(i) For every integer i ∈ {1, 2, 3} and for every line l such that |left(l) ∩ R| = gi, we
have |left(l) ∩B| < hi (Figure 4 (a)).

(ii) For every integer i ∈ {1, 2, 3} and for every line l such that |left(l) ∩ R| = gi, we
have |left(l) ∩B| > hi.

Then there exists three rays emanating from a certain same point such that the three
open polygon Wi (1 ≤ i ≤ 3) defined by these three rays are convex, and each Wi (1 ≤ i ≤
3) contains exactly gi red points and hi blue points (Figure 4 (b)). Moreover, one of the
three rays can be chosen to be a vertically downward ray.

W1

W2

W3
less than hi  
blue points

(b)

gi  red points

li

left(li)

(a)

Figure 4: (a) The condition (i) ; (b) A 3-cutting.

Proof of Theorem 2. Suppose that |R| = ag + (a + 1)h and |B| = (a + 1)g + ah.
We prove the theorem by induction on g+h. In the proof, a line means a line that passes
through no points in R ∪ B, and when a line passes through some points in R ∪ B, it is
explicitly written.

If g = 0, then |R| = (a + 1)h and |B| = ah, and so we can get the desired subdivision
by Theorem 3. Hence we may assume that g ≥ 1, and similarly h ≥ 1.
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Assume that there exists a line l such that left(l) contains exactly as + (a + 1)t red
points and (a + 1)s + at blue points for some integers 0 ≤ s ≤ g and 0 ≤ t ≤ h such that
1 ≤ s+ t ≤ g + h− 1. Then by applying the inductive hypotheses to left(l) and right(l)
respectively, we can obtain the desired subdivision of the plane. Hence we may assume
that there exists no such a line l. By Lemma 5 and by this fact, for every pair (i, j) of
integers 0 ≤ i ≤ g and 0 ≤ j ≤ h such that 1 ≤ i+ j ≤ g + h− 1, we can define sign(i, j)
as follows:

sign(i, j) = + if |left(l) ∩ B| > (a + 1)i + aj for every line l with
|left(l) ∩ R| = ai + (a + 1)j; and

sign(i, j) = − if |left(l) ∩B| < (a + 1)i + aj for every line l with
|left(l) ∩ R| = ai + (a + 1)j.

Since |left(l) ∩ R| = as + (a + 1)t implies |left(l∗) ∩ R| = a(g − s) + (a + 1)(h− t) and
since |left(l) ∩ B| + |left(l∗) ∩B| = |B|, we obtain

sign(g − s, h− t) = −sign(s, t).

Claim 1 We may assume sign(1, 0) = sign(0, 1) = −.

Proof. Assume first sign(1, 0) = −. Let l1 be a line with |left(l1)∩R| = a+ 1. Let l2
be a line which passes through one red point and satisfies the following:

|left(l2) ∩ R| = a and left(l2) ∩ (R ∪ B) ⊆ left(l1) ∩ (R ∪ B).

Then |left(l2) ∩ B| < a + 1 as sign(1, 0) = −. If |left(l1) ∩ B| ≥ a, then there exists a
line l3 between l2 and l3 such that |left(l3) ∩ R| = a + 1 and |left(l3) ∩ B| = a, which
contradicts the fact mentioned above (s = 0, t = 1). Hence |left(l1) ∩ B| < a, which
implies sing(0, 1) = −.

Next assume sign(1, 0) = +. By changing the colors red and blue, we have sign(0, 1) =
−. By the same argument given above, we can show that sing(0, 1) = − implies
sign(1, 0) = −. Therefore we may assume that Claim 1 holds. ✷

Claim 2 We may assume sign(1, 0) = · · · = sign(g, 0) = − and sing(0, 1) = · · · =
sign(0, h) = −.

Proof. Suppose that there exists an integer k (2 ≤ k ≤ g) such that sign(1, 0) = · · · =
sign(k− 1, 0) = − and sign(k, 0) = +. Since sign(k, 0) = +, we have sign(g− k, h) = −.
Then

sign(g − k, h) = sign(k − 1, 0) = sign(1, 0) = −, (1)

and thus by the 3-cutting Theorem, we can obtain a subdivision W1∪W2∪W3 of the plane
into three wedges, where W1 contains a(g−k)+(a+1)h red points and (a+1)(g−k)+ah
blue points, W2 contains a(k − 1)red points and (a + 1)k blue points, and W3 contains
a red points and a + 1 blue points. By applying inductive hypotheses to each Wi, we
can obtain the desired subdivision of the plane. Hence we may assume that sign(1, 0) =
· · · = sign(g, 0) = −, and similarly we may assume sing(0, 1) = · · · = sign(0, h) = − by
Claim 1. ✷
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By Claim 2, we have sign(g, 0) = −, which implies sign(0, h) = + by (1). However,
this contradicts Claim 2. Consequently Theorem 2 is proved. ✷

Proof of Theorem 1. As we stated in the introduction, in order to prove Theorem 1,
it suffices to show the next Theorem 7.

Theorem 7 Let n be an integer such that 2 ≤ n ≤ 12 or n = 14, and let R be a set of
�n/2� red points and B be a set of �n/2� bule points in the plane such that no three points
of R ∪B lie on the same line. Then there exists a Pn-covering of R ∪B.

In order to prove the above Theorem 7, we need some definitions and lemmas. For a
set X of points in the plane in general position, we denote by conv(X) the convex hull of
X. For two points s �∈ conv(X) and t ∈ X, we say that a vertex t of conv(X) is visible
from s if the straight-line segment st intersects conv(X) in exactly one point t, which
implies that t must be a vertex of conv(X). Let Ri and Bi always denote subsets of R
and B, respectively. Note the following simple lemma.

Lemma 8 Let R be a set of two red points and B a set of two blue points in the plane.
Then for any vertex z of conv(R ∪ B), there exists a P4-covering of R ∪ B starting with
z.

The following lemma is an easy consequence of Lemma 8.

Lemma 9 Let R be a set of three red points and B a set of two blue points in the plane,
and let x be a red vertex of conv(R ∪B). If a blue vertex of conv(R ∪B − {x}) is visible
from x, then there exists a P5-covering of R ∪ B starting with x (Figure 5 (a)).

convex hull

x

y

(b)

convex hull

x

(c)

convex hull

x

y’

(d)

x’
convex hull

x

(a)

y1

y

Figure 5: (a) A P5-covering; (b) A P6-covering; (c) A P7-covering; (d) A P8-covering.

Lemma 10 Let R be a set of three red points and B a set of three blue points in the
plane, and let x be a red vertex of conv(R ∪B). If a blue vertex of conv(R ∪B − {x}) is
visible from x, then there exists a P6-covering of R ∪ B starting with x (Figure 5 (b)).
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Proof. Let y be a blue vertex of conv(R∪B−{x}) that is visible from x. If a red vertex
of conv(R ∪ B − {x, y}) is visible from y, then by Lemma 9, there exists a P5-covering
of R ∪ B − {x} starting with y, which implies the existence of the desired P6-covering of
R∪B. So we may assume that all the vertices of conv(R∪B−{x, y}) visible from y are
blue points. Then there are exactly two such blue vertices, and at least one of them, say
y1, is visible from x, and at least one red vertex of conv(R ∪ B − {x, y1}) is visible from
y1 (Figure 5 (b)). Then by Lemma 9, there exists a P6-covering of R∪B starting with x.
✷

Lemma 11 Let R be a set of four red points and B a set of three blue points in the plane,
and let x be a red vertex of conv(R ∪B). If a blue vertex of conv(R ∪B − {x}) is visible
from x, then there exists a P7-covering of R ∪ B starting with x (Figure 5 (c)).

Proof. Let y be a blue vertex of conv(R∪B−{x}) that is visible from x. If a red vertex
of conv(R∪B−{x, y}) is visible from y, then by applying Lemma 10 to R∪B−{x} and
y, we can obtain the desired P7-covering of R∪B starting with x. So we may assume that
all the vertices of conv(R∪B − {x, y}) that is visible from y are blue points. Then there
exist exactly two such blue vertices, and at least one of them, say y1, is visible from x, and
at least one red vertex of conv(R ∪ B − {x, y1}) is visible from y1. Then by Lemma 10,
there exists a P7-covering of R ∪ B starting with x. ✷

Lemma 12 Let R be a set of four red points and B a set of four blue points in the
plane, and let x be a red vertex of conv(R ∪ B). If a red vertex and a blue vertex of
conv(R ∪ B − {x}) are both visible from x, then there exists a P8-covering of R ∪ B
starting with x (Figure 5 (d)).

Proof. There exist a red vertex x1 and a blue vertex y1 of conv(R ∪ B − {x}) such that
both of them are visible from x and x1y1 is an edge of conv(R∪B−{x}). It is obvious that
x1 is a red vertex of conv(R∪B−{x, y1}) which is visible from y1. Hence by Lemma 11,
there exists the required P8-covering of R ∪B starting with x. ✷

Proof of Theorem 7. Suppose that |R| = �n/2� and |B| = �n/2�. If 2 ≤ n ≤ 6, then
we can easily show the existence of the required Pn-covering of R∪B by similar arguments
in the case of n = 7, which is given below. Hence we may assume that 7 ≤ n ≤ 12 or
n = 14. We consider several cases corresponding to the value of n.

Case 1. n = 7.

By the Ham-Sandwich Theorem, there exists a bisector l such that l passes through
exactly one blue point, say y, and each of left(l) and right(l) contains exactly two red
points and one blue point. Let R1 ∪ B1 = (R ∪ B) ∩ left(l). Since y is a vertex of
conv(R1 ∪ B1 ∪ {y}), by Lemma 8 there exists a P4-covering of R1 ∪ B1 ∪ {y} starting
with y. Similarly, there exists a P4-covering of ((R∪B)∩ right(l))∪ {y} starting with y.
Hence there exists the desired P7-covering of R ∪B.

Case 2. n = 8.
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Suppose that R∪B is bisected by a line l so that a red vertex x of conv((R∪B)∩left(l))
and a blue vertex y of conv((R∪B)∩ right(l)) are visible from each other (Figure 6 (a)).
Then by Lemma 8, there exist a P4-covering of (R ∪ B) ∩ left(l) starting with x and a
P4-covering of (R ∪ B) ∩ right(l) starting with y. By connecting these two paths by an
edge xy, we obtain the desired P8-covering of R ∪ B. Hence we may assume that there
exists no such a bisector l of R ∪B.

Let l1 be a bisector, and let R1∪B1 = (R∪B)∩left(l1) and R2∪B2 = (R∪B)∩right(l1).
By the above assumption, if a vertex of conv(R1 ∪B1) and a vertex of conv(R2 ∪B2) are
visible from each other, then they must have the same color. So, without loss generality,
we may assume that these vertices are red. Take a tangent line to conv(R1 ∪ B1) and
conv(R2∪B2), which passes through two red vertices, and rotate it slightly, then we obtain
a new bisector l2 for which the partition R∪B = ((R∪B)∩left(l2))∪((R∪B)∩right(l2))
does not satisfy the above assumption (Figure 6 (b)). Therefore the case is proved.

l2
(a)  n=8

xy

(c)  n=9

x

x1 x2

l2

l1

l1

x

y

(d)  n=10

(b)  n=8

x3
x4

x1

l x
y

(e)  n=11

x1

y1

y

(f)  n=11

y1l2

l3
y2

l1

l1

Figure 6: (a) A P8-covering; (b) A bisector l2; (c) A P9-covering; (d) A P10-covering; (e)
A P11-covering in Subcase 5.1; (f) Bisectors l, l1, l2 in Subcase 5.2.

Case 3. n = 9.

Let l1 be a bisector, which passes through one red point, say x. Let R1 ∪ B1 =
(R∪B)∩ left(l1) and R2∪B2 = (R∪B)∩right(l1). If a blue vertex of conv(R1∪B1) and
a blue vertex of conv(R2 ∪B2) are both visible from x, then there exists a P9-covering of
R∪B by Lemma 9. Thus we may assume that every vertex of conv(R1 ∪B1) visible from
x is red. Hence every red point of R1 = {x1, x2} is a vertex of conv(R1 ∪B1) and visible
from x (Figure 6 (c)). If a blue vertex y of conv(R2 ∪ B2) is visible from x1 or x2, then
at least one of yx1 and yx2 intersects conv(R1 ∪ B1 ∪ {x}) in exactly one point x1 or x2,
and so by Lemmas 8 and 10, we can obtain the desired P9-covering of R ∪ B. Hence we
may assume that every vertex of conv(R2 ∪B2) that is visible from x1 or x2 is red, which
implies that the two red points of R2 are vertices of conv(R2 ∪B2) and visible from x1 or
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x2. Similarly, we may assume that every vertex of conv(R1 ∪B1) visible from a red point
of R3 is red.

Let R3 = {x3, x4}. Then there exists a bisector l2 of R ∪ B such that left(l2) ∩ R =
{x1, x3} or right(l2) ∩ R = {x2, x4} (Figure 6 (c)). By symmetry, we may assume that
l2 satisfies left(l2) ∩ R = {x1, x3}, which implies l2 passes through exactly one point of
{x, x2, x4}, say x′. Since a blue vertex of conv((R ∪ B) ∩ left(l2)) is visible from x′, we
can obtain a P9-covering of R ∪B by the above same argument as above.

Case 4. n = 10.

Let l be a bisector of R∪B. Then l passes through one red point, say x, and one blue
point, say y. Let R1 ∪B1 = (R∪B)∩ left(l) and R2 ∪B2 = (R∪B)∩ right(l). Without
loss of generality, a red vertex x1 of conv(R1 ∪B1) is visible from y since otherwise a blue
vertex of conv(R1 ∪B1) is visible from x. By Lemma 9, R1 ∪B1 ∪ {y} has a P5-covering
starting with y (Figure 6 (d)). Since x is a red vertex of conv(R2∪B2∪{x}) that is visible
from y, by Lemma 10, R2 ∪B2 ∪ {x, y} has a P6-covering starting with y. Consequently,
R ∪ B has a P10-covering.

Case 5. n = 11.

Subcase 5.1. There exists a line l such that l passes through one red point and one blue
point, (R∪B)∩left(l) consists of three red points and two blue points, and (R∪B)∩right(l)
consists of two red points and two blue points (Figure 6 (e)).

Let x and y be the red point and the blue point on the line l, respectively, and let
R1 ∪ B1 = (R ∪ B) ∩ left(l) and R2 ∪ B2 = (R ∪ B) ∩ right(l). If a red vertex of
conv(R1 ∪ B1) is visible from y, then by Lemma 10, R1 ∪ B1 ∪ {y} has a P6-covering
starting with y. Moreover, by Lemma 10, R2 ∪ B2 ∪ {x, y} has a P6-covering starting
with y, and so we can obtain the desired P11-covering of R ∪ B. Hence we may assume
that every vertex of conv(R1 ∪ B1) visible from y is blue. Similarly, if a blue vertex of
conv(R2 ∪ B2) is visible from x, then by Lemma 9, R2 ∪ B2 ∪ {x} has a P5-covering
starting with x. Moreover, by Lemma 11, R1∪B1∪{x, y} has a P7-covering starting with
x, and hence there exists the desired P11-covering of R ∪ B. Thus we may assume that
every vertex of conv(R2 ∪ B2) visible from x is red. Therefore there exist y1 ∈ B1 and
x1 ∈ R2 ∪ {x} such that y1x1 intersects conv(R1 ∪ B1 ∪ {y}) in exactly one point y1 and
intersects conv(R2 ∪B2 ∪ {x}) in exactly one point x1 (Figure 6 (d)). Since a red vertex
of conv(R1 ∪B1 ∪ {y}) is visible from y1, by Lemma 10, R1 ∪B1 ∪ {y} has a P6-covering
starting with y1. Similarly, R2 ∪ B2 ∪ {x} has a P5-covering starting with x1. Therefore
R ∪ B has the desired P11-covering.

Subcase 5.2. There exists no line l such that l passes through one red point and
one blue point, (R ∪ B) ∩ left(l) consists of three red points and two blue points, and
(R ∪ B) ∩ right(l) consists of two red points and two blue points.

Let l1 be a bisector, which passes through one blue point, say y. By the assumption
of this subcase, when we rotate l1 clockwise around y until it is tangent to conv((R ∪
B)∩ right(l1)) or conv((R∪B)∩ left(l1)), it must be tangent at a blue vertex. Without
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loss of generality, we may assume that it is tangent to conv((R ∪ B) ∩ right(l1)) at a
blue vertex, say y1 (Figure 6 (f)). Then by a small rotation of the tangent line around
y1, we can obtain a new bisector l2 such that (R ∪ B) ∩ left(l2) = (R ∪ B) ∩ left(l1)
and (R ∪ B) ∩ right(l2) = ((R ∪ B) ∩ right(l1)) ∪ {y} − {y1} (Figure 6 (f)). We repeat
the above procedure one more time or two more times until we can get a bisector l3 that
passes through a blue vertex y2 of conv((R ∪ B) ∩ left(l2)) (Figure 6 (f)). However, this
bisector l3 does not satisfy the assumption of this subcase, which implies that the proof
of the subcase is complete.

Case 6. n = 12.

We consider two subcases.

Subcase 6.1. There exists a line l such that l passes through one red point and one blue
point, (R∪B)∩left(l) consists of two red points and three blue points, and (R∪B)∩right(l)
consists of three red points and two blue points (Figure 7 (a)).

Let x and y be the red point and the blue point on l, respectively, and let R1 ∪B1 =
(R ∪ B) ∩ left(l) and R2 ∪ B2 = (R ∪ B) ∩ right(l). If a blue vertex of conv(R1 ∪ B1)
is visible from x, then by Lemma 10, R1 ∪ B1 ∪ {x} has a P6-covering starting with x.
Moreover, by Lemma 11, R2 ∪B2 ∪ {x, y} has a P7-covering starting with x, and so there
exists the desired P12-covering of R ∪ B. Hence we may assume that every vertex of
conv(R1 ∪ B1) visible from x is red. By symmetry, if a red vertex of conv(R2 ∪ B2) is
visible from y, then we can obtain the desired P12-covering of R ∪ B. Hence we may
assume that every vertex of conv(R2 ∪ B2) visible from y is blue. Therefore we can find
two points x1 ∈ R1 and y1 ∈ B2 such that x1y1 intersects conv(R1 ∪B1 ∪ {x}) in exactly
one point x1 and intersects conv(R2∪B2∪{y}) in exactly one point y1. Since R1∪B1∪{x}
has a P6-covering starting with x1 and R2 ∪ B2 ∪ {y} has a P6-covering starting with y1,
we can obtain the desired P12-covering of R ∪B by connecting these paths by x1y1.

l x
y

(a)  n=12

x1

y1

(b)  n=12

x1

l1

l2
y1

x2 y2

(c)  n=12

x1l
x2

Figure 7: (a) A configuration of Subcase 6.1; (b) Bisectors l1 and l2; (c) A configuration
of Subcase 6.2.

Subcase 6.2. There exists no line l such that l passes through one red point and
one blue point, (R ∪ B) ∩ left(l) consists of two red points and three blue points, and
(R ∪ B) ∩ right(l) consists of three red points and two blue points (Figure 7 (b)).

Let l1 be a bisector, which passes through no red and blue points. If we rotate
l1 clockwise until it is tangent to both conv((R ∪ B) ∩ left(l1)) and conv((R ∪ B) ∩
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right(l1)), then the line passes through two vertices with the same colors since otherwise
the assumption of the subcase does not hold for the tangent line. By a small rotation
of the tangent line around its midpoint, we can obtain a new bisector l2 (Figure 7 (b)).
By repeating this procedure at most two more times, we can find a bisector l such that
(R∪B)∩ left(l) and (R∪B)∩right(l) have two common tangent lines that pass through
two red vertices or two blue vertices each (Figure 7 (c)). Let R3 ∪B3 = (R∪B)∩ left(l)
and R4 ∪ B4 = (R ∪ B) ∩ right(l). Then we can find four points x1 ∈ R3, y1 ∈ B3, x2 ∈
R4, y2 ∈ R4 such that x1y1 is an edge of conv(R3 ∪B3), x2y2 is an edge of conv(R4 ∪B4),
and x1y2 intersects conv(R3 ∪ B3) and conv(R4 ∪ B4) in exactly one point x1 and y2,
respectively. Then by Lemma11, R3 ∪B3 has a P6-covering starting with x1 and R4 ∪B4

has a P6-covering starting with y2, and thus R ∪ B has the desired P12-covering.

Case 7. n = 14.

Let l be a bisector. Then l passes through one red point, say x, and one blue point,
say y. Let R1 ∪B1 = (R ∪B) ∩ left(l) and R2 ∪B2 = (R ∪B) ∩ right(l). By symmetry,
we may assume that a red vertex x1 of conv(R1 ∪ B1) is visible from both x and y. If a
blue vertex of conv(R2 ∪ B2) is visible from x, then by Lemma 11, both R1 ∪ B1 ∪ {y}
and R2 ∪ B2 ∪ {x} have P7-coverings starting with y and x, respectively, and so R ∪ B
has a P14-covering. Hence we may assume that every vertex of conv(R2∪B2) visible from
x is red, which implies that there exists a red vertex, say x2, of conv(R2 ∪ B2) which is
visible from both x and y. Since x2 is visible from y, by the same argument as above,
we can prove that we may assume every vertex of conv(R1 ∪ B1) visible from x is a red
point. If a blue vertex of conv(R1 ∪B1) is visible from y, then by applying Lemma 12 to
R1∪B1∪{y}, R1∪B1∪{y} has a P8-covering starting with y. By Lemma 11, R2∪B2∪{y}
has a P7-covering starting with y. Therefore R ∪ B has the desired P14-covering. Thus
we may assume that every vertex of conv(R1 ∪ B1) visible from y is red. By symmetry,
we may also assume that every vertex of conv(R2 ∪B2) visible from y is red.

We consider the two subcases.

l y

(a)  n=14

x1

(b)  n=14

x3

x2

x l y

x1 x2

x

Figure 8: (a) A configuration of Subcase 7.1; (b) A configuration of Subcase 7.2; (c) A
configuration of ((R ∪B) ∩ left(l)) ∪ {x}.

Subcase 7.1. Three vertices of conv(R1 ∪ B1) are visible from x or y.

Without loss of generality, we may assume that the line l is horizontal and directed
from left to right, and y lies to the left of x (Figure 7 (a)). Let x3 be the left most vertex
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of conv(R1 ∪ B1) that is visible from y. Then x3 is a red point, and a blue vertex of
conv((R1 ∪ B1 ∪ {x}) − {x3}) is visible from x3. Thus by Lemma 11, R1 ∪ B1 ∪ {x} has
a P7-covering starting with x3. Similarly, R2 ∪ B2 ∪ {y} has a P7-covering starting with
y. By connecting these two paths by x3y, we obtain the desired P14-covering of R ∪ B.

Subcase 7.2. Exactly two vertices of conv(R1 ∪B1) are visible from x or y.

It is shown as in the proof of the above subcase that we may assume that the two
vertices of conv(R1 ∪ B1) visible from x or y are red points (Figure 7 (b)). Of course,
these points visible from both x and y. We denote these red points by x1 and x2, and
the remaining red point of R1 by x3. By the same argument as in the proof of the above
subcase, we may assume that no blue vertex of conv(R1 ∪B1 −{xi}) is visible from xi for
every i ∈ {1, 2} since both x1 and x2 are visible from y. However, there exists no such a
configuration. Consequently the proof is complete. ✷
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