DRAFT

Path Coverings of Two Sets of Points in the Plane

Atsushi Kaneko¹, M. Kano² and Kazuhiro Suzuki¹

¹Department of Computer Science and Communication Engineering Kogakuin University Nishi-Shinjuku, Shinjuku-ku, Tokyo 163-8677 Japan e-mail: kaneko@ee.kogakuin.ac.jp

> ²Department of Computer and Information Sciences Ibaraki University, Hitachi 316-8511 Japan e-mail: kano@cis.ibaraki.ac.jp

Abstract

We consider the following problem: For given two sets of red points and blue points in the plane respectively, we want to cover all these points with disjoint noncrossing alternating geometric paths of the same length. Determine the length of a path for which the above covering always exists under a trivial necessary condition on the numbers of red points and blue points. We give a complete solution to this problem.

1 Introduction

A graph drawn in the plane is called a *geometric graph* if every edge is a straight-line segment, and said to be *non-crossing* if it has no crossings. It is well-known ([8]) that for given k red points and k blue points in the plane in general position, there exist a non-crossing geometric alternating perfect matching on these red and blue points, that is, there exist k disjoint straight-line segments that connect red points and blue points and have no crossings. Note that red and blue points are said to be *in general position* if no three their points lie on the same line.

We generalize the above problem by considering paths since a matching is a path of length one. A path with order n and length n-1 is denote by P_n , and a path drawn in the plane is called an *alternating path* if it passes through alternately red points and blue points. We consider the following problem: For any given red and blue points in the plane in general position, do there exist disjoint non-crossing geometric alternating paths P_n 's that cover all the red and blue points under a trivial necessary condition on the numbers of red points and blue points (Figure 1 (b))? For convenience, we briefly say that there exists a P_n -covering if there exist such disjoint paths P_n 's. In this paper, we prove the following theorem, which gives a complete solution to the above problem.

Theorem 1 Let g and h denote non-negative integers. If n is an even integer such that $2 \leq n \leq 14$, then for any given (n/2)g red points and (n/2)g blue points in the plane in general position, there exists a P_n -covering. If n is an odd integer such that $3 \leq n \leq 11$, then for any given $\lfloor n/2 \rfloor g + \lfloor n/2 \rfloor h$ red points and $\lfloor n/2 \rfloor g + \lfloor n/2 \rfloor h$ blue points in the plane in general position, there exists a P_n -covering.

Moreover, for any integer n such that n = 13 or $n \ge 15$, there exists a configuration with $\lfloor n/2 \rfloor$ red points and $\lfloor n/2 \rfloor$ blue points for which there exists no P_n -covering.

In order to prove the above Theorem 1, we prove the next theorem, which is a new balanced subdivision theorem of two sets of points in the plane.

Theorem 2 Let $m \ge 1$, $g \ge 0$ and $h \ge 0$ be integers such that $g + h \ge 1$. Let R be a set of mg + (m + 1)h red points and B a set of (m + 1)g + mh blue points in the plane such that no three points of $R \cup B$ lie on the same line. Then there exists a subdivision $X_1 \cup \cdots \cup X_g \cup Y_1 \cup \cdots \cup Y_h$ of the plane into g + h disjoint convex polygons such that every X_i $(1 \le i \le g)$ contains exactly m red points and m + 1 blue points and every Y_i $(1 \le j \le h)$ contains exactly m + 1 red points and m blue points (Figure 1 (a)).

•:Red point o:Blue point (a) A balanced subdivision (b) A P5-covering

Figure 1: A subdivision given in Theorem 2 with m = 2, g = 2, h = 3, and a P_5 -covering.

It should be remarked that the above theorem 2 cannot be generalized to partitions for two positive integers m and k with $k \ge m + 2$. Namely, if kt + mt red points and mt + kt blue points alternately lie on a circle in the plane for any integer $t \ge 1$, then we cannot subdivide the plane into g + h disjoint convex polygons $X_1 \cup \cdots \cup X_g \cup Y_1 \cup \cdots \cup Y_h$ so that every X_i $(1 \le i \le g)$ contains exactly m red points and k blue points and every Y_j $(1 \le j \le h)$ contains exactly k red points and m blue points

We now explain a sketch of the proof of Theorem 1. Suppose first n is even. If there exists a P_n -covering of given red and blue points in the plane, then the number of red points must be equal to that of blue points, and its number is expressed as (n/2)g for some integer $g \ge 1$. Conversely, if (n/2)g red points and (n/2)g blue points are given

for some integer $g \ge 1$, then by Theorem 3, which will given in the next section, we can divide the plane into g convex polygons so that each polygon contains exactly n/2 red points and n/2 blue points. Thus if we can show that for every arrangement of n/2 red points and n/2 blue points in the plane in general position, there exists a P_n -covering, then we can say that there exist a P_n -covering of the given red and blue points, and the problem is affirmatively solved.

Similarly, if n is odd, then a trivial necessary condition for the existence of P_n -covering is that the number of red points and that of blue points are expressed as $\lfloor n/2 \rfloor g + \lfloor n/2 \rfloor h$ and $\lfloor n/2 \rfloor g + \lfloor n/2 \rfloor h$, respectively, for some non-negative integers g and h. Conversely, if such numbers of red points and blue points are given in the plane in general position, then by Theorem 2, we can divide the plane into g + h convex polygons so that each polygon contains either $\lfloor n/2 \rfloor$ red points and $\lfloor n/2 \rfloor$ blue points or $\lfloor n/2 \rfloor$ red points and $\lfloor n/2 \rfloor$ blue points. Therefore if we can show for every arrangement of $\lfloor n/2 \rfloor$ red points and $\lfloor n/2 \rfloor$ blue points in the plane in general position, there exists a P_n -covering, then the problem is affirmatively solved.

However, when n = 13 or $n \ge 15$, there exist configurations of $\lceil n/2 \rceil$ red points and $\lfloor n/2 \rfloor$ blue points for which there exists no P_n -covering, and these configurations are shown in Figure 2 (a), (c) and (d).

Figure 2: (a) A configuration of 13 points having no P_{13} -covering; (b) A configuration of 14 points having a P_{14} -covering; (c)+(d) Configurations of 15 or more points having no P_n -covering.

2 Proofs of Theorems

For convenience, we call a region in the plane whose boundary consists of straight-line segments a *polygon* even if it is an infinite region. For example, Figure 2 (a) illustrates a subdivision of the plane into five convex polygons.

The following Theorem 3, which was conjectured in [5] and proved for n = 1, 2 in [5] and [6], was recently completely proved by Bespamyatnikh, Kirkpatrick and Snoeyink [2], Sakai [9] and by Ito, Uehara and Yokoyama [4] independently. Note that this theorem

with g = 2 is equivalent to the famous Ham-sandwich Theorem for the plane. Moreover, interesting results related to the next theorem can be found in [1].

Theorem 3 ([2], [9], [4]) Let $a \ge 1$, $b \ge 1$ and $g \ge 2$ be positive integers. Let R be a set of ag red points and B a set of bg blue points in the plane such that $R \cup B$ consists of points in general position. Then there exists a subdivision $X_1 \cup X_2 \cup \cdots \cup X_g$ of the plane into g disjoint convex polygons such that every X_i contains exactly a red points and b blue points.

Before giving proofs, we introduce some definitions and notation. We deal only with directed lines in order to define the right side of a line and the left side of it. Thus a line means a directed line. A line l dissects the plane into three pieces: l and two open half-planes right(l) and left(l), where right(l) and left(l) denote the open half-planes which are on the right side and the left side of l, respectively. Let r_1 and r_2 be two rays emanating from the same point p. Then we denote by $right(r_1) \cap left(r_2)$ the open region that is swept by the ray being rotated clockwise around p from r_1 to r_2 , and does not contain the point p (see Figure 3). Similarly the open region $left(r_1) \cap right(r_2)$ can be defined, and $r_1 \cup r_2$ dissects the plane into three pieces: $r_1 \cup r_2$ and two open regions $right(r_1) \cap left(r_2)$ and $left(r_1) \cap right(r_2)$. If the internal angle $\angle r_1 p r_2$ is less than π , then we call $right(r_1) \cap left(r_2)$ the wedge defined by r_1 and r_2 , and denote it by $wedge(r_1r_2)$ or $wedge(r_2r_1)$. For a line l_i with suffix i, we define l_i^* as the line lying on l_i and having the opposite direction of l_i .

Figure 3: Open regions right(l), left(l) and $left(r_1) \cap right(r_2)$, and a wedge $wedge(r_1r_2) = wedge(r_2r_1)$.

Hereafter, R and B always denote two disjoint sets of red points and blue points in the plane, respectively, such that no three points of $R \cup B$ lie on the same line.

Theorem 4 (The Ham-sandwich Theorem [3]) For R and B, there exists a line l such that $|left(l) \cap R| = |right(l) \cap R|$, $|l \cap R| \le 1$, $|left(l) \cap B| = |right(l) \cap B|$ and $|l \cap B| \le 1$.

The line l given in the above theorem is called a *bisector* of $R \cup B$, and we say that $R \cup B$ is bisected by l. It is clear that if both |R| and |B| are even, then the bisector l passes through no red point and no blue point. The following Lemma 5 is known, and its distinct proofs are found in [5] and [2].

Lemma 5 For R and B, if there exist two lines l_1 and l_2 such that $|left(l_1) \cap R| = |left(l_2) \cap R|$ and $|left(l_1) \cap B| \le k \le |left(l_2) \cap B|$, then there exists a line l_3 such that $|left(l_3) \cap R| = |left(l_1) \cap R|$, $|left(l_3) \cap B| = k$ and l_3 passes through no point in $R \cup B$.

The following theorem, called the 3-cutting Theorem, plays an important role. This theorem was proved by Bespamyatnikh, Kirkpatrick and Snoeyink [2] under the assumption that

$$\frac{g_1}{h_1} = \frac{g_2}{h_2} = \frac{g_3}{h_3}$$

However this condition can be removed without changing the arguments in the proof given in [2]. This relaxation is necessary to prove our Theorem 2. Note that similar results, which seems to be essentially equivalent to the original 3-cutting Theorem, were obtained in [9] and [4], respectively.

Theorem 6 (The 3-cutting Theorem [2]) Let $g_1, g_2, g_3, h_1, h_2, h_3$ be positive integers such that $|R| = g_1 + g_2 + g_3$ and $|B| = h_1 + h_2 + h_3$. Suppose that one of the following statements (i) or (ii) is true:

(i) For every integer $i \in \{1, 2, 3\}$ and for every line l such that $|left(l) \cap R| = g_i$, we have $|left(l) \cap B| < h_i$ (Figure 4 (a)).

(ii) For every integer $i \in \{1, 2, 3\}$ and for every line l such that $|left(l) \cap R| = g_i$, we have $|left(l) \cap B| > h_i$.

Then there exists three rays emanating from a certain same point such that the three open polygon W_i $(1 \le i \le 3)$ defined by these three rays are convex, and each W_i $(1 \le i \le 3)$ contains exactly g_i red points and h_i blue points (Figure 4 (b)). Moreover, one of the three rays can be chosen to be a vertically downward ray.

Figure 4: (a) The condition (i); (b) A 3-cutting.

Proof of Theorem 2. Suppose that |R| = ag + (a + 1)h and |B| = (a + 1)g + ah. We prove the theorem by induction on g + h. In the proof, a line means a line that passes through no points in $R \cup B$, and when a line passes through some points in $R \cup B$, it is explicitly written.

If g = 0, then |R| = (a + 1)h and |B| = ah, and so we can get the desired subdivision by Theorem 3. Hence we may assume that $g \ge 1$, and similarly $h \ge 1$. Assume that there exists a line l such that left(l) contains exactly as + (a + 1)t red points and (a + 1)s + at blue points for some integers $0 \le s \le g$ and $0 \le t \le h$ such that $1 \le s + t \le g + h - 1$. Then by applying the inductive hypotheses to left(l) and right(l)respectively, we can obtain the desired subdivision of the plane. Hence we may assume that there exists no such a line l. By Lemma 5 and by this fact, for every pair (i, j) of integers $0 \le i \le g$ and $0 \le j \le h$ such that $1 \le i + j \le g + h - 1$, we can define sign(i, j)as follows:

$$sign(i, j) = + \text{ if } |left(l) \cap B| > (a+1)i + aj \text{ for every line } l \text{ with } |left(l) \cap R| = ai + (a+1)j; \text{ and } sign(i, j) = - \text{ if } |left(l) \cap B| < (a+1)i + aj \text{ for every line } l \text{ with } |left(l) \cap R| = ai + (a+1)j.$$

Since $|left(l) \cap R| = as + (a+1)t$ implies $|left(l^*) \cap R| = a(g-s) + (a+1)(h-t)$ and since $|left(l) \cap B| + |left(l^*) \cap B| = |B|$, we obtain

$$sign(g - s, h - t) = -sign(s, t).$$

Claim 1 We may assume sign(1,0) = sign(0,1) = -.

Proof. Assume first sign(1,0) = -. Let l_1 be a line with $|left(l_1) \cap R| = a + 1$. Let l_2 be a line which passes through one red point and satisfies the following:

$$|left(l_2) \cap R| = a$$
 and $left(l_2) \cap (R \cup B) \subseteq left(l_1) \cap (R \cup B).$

Then $|left(l_2) \cap B| < a + 1$ as sign(1, 0) = -. If $|left(l_1) \cap B| \ge a$, then there exists a line l_3 between l_2 and l_3 such that $|left(l_3) \cap R| = a + 1$ and $|left(l_3) \cap B| = a$, which contradicts the fact mentioned above (s = 0, t = 1). Hence $|left(l_1) \cap B| < a$, which implies sing(0, 1) = -.

Next assume sign(1,0) = +. By changing the colors red and blue, we have sign(0,1) = -. By the same argument given above, we can show that sing(0,1) = - implies sign(1,0) = -. Therefore we may assume that Claim 1 holds. \Box

Claim 2 We may assume $sign(1,0) = \cdots = sign(g,0) = -$ and $sing(0,1) = \cdots = sign(0,h) = -$.

Proof. Suppose that there exists an integer $k \ (2 \le k \le g)$ such that $sign(1,0) = \cdots = sign(k-1,0) = -$ and sign(k,0) = +. Since sign(k,0) = +, we have sign(g-k,h) = -. Then

$$sign(g - k, h) = sign(k - 1, 0) = sign(1, 0) = -,$$
(1)

and thus by the 3-cutting Theorem, we can obtain a subdivision $W_1 \cup W_2 \cup W_3$ of the plane into three wedges, where W_1 contains a(g-k) + (a+1)h red points and (a+1)(g-k) + ahblue points, W_2 contains a(k-1)red points and (a+1)k blue points, and W_3 contains a red points and a+1 blue points. By applying inductive hypotheses to each W_i , we can obtain the desired subdivision of the plane. Hence we may assume that sign(1,0) = $\cdots = sign(g,0) = -$, and similarly we may assume $sing(0,1) = \cdots = sign(0,h) = -$ by Claim 1. \Box By Claim 2, we have sign(g, 0) = -, which implies sign(0, h) = + by (1). However, this contradicts Claim 2. Consequently Theorem 2 is proved. \Box

Proof of Theorem 1. As we stated in the introduction, in order to prove Theorem 1, it suffices to show the next Theorem 7.

Theorem 7 Let n be an integer such that $2 \le n \le 12$ or n = 14, and let R be a set of $\lceil n/2 \rceil$ red points and B be a set of $\lfloor n/2 \rfloor$ bule points in the plane such that no three points of $R \cup B$ lie on the same line. Then there exists a P_n -covering of $R \cup B$.

In order to prove the above Theorem 7, we need some definitions and lemmas. For a set X of points in the plane in general position, we denote by conv(X) the convex hull of X. For two points $s \notin conv(X)$ and $t \in X$, we say that a vertex t of conv(X) is visible from s if the straight-line segment st intersects conv(X) in exactly one point t, which implies that t must be a vertex of conv(X). Let R_i and B_i always denote subsets of R and B, respectively. Note the following simple lemma.

Lemma 8 Let R be a set of two red points and B a set of two blue points in the plane. Then for any vertex z of $conv(R \cup B)$, there exists a P₄-covering of $R \cup B$ starting with z.

The following lemma is an easy consequence of Lemma 8.

Lemma 9 Let R be a set of three red points and B a set of two blue points in the plane, and let x be a red vertex of $conv(R \cup B)$. If a blue vertex of $conv(R \cup B - \{x\})$ is visible from x, then there exists a P₅-covering of $R \cup B$ starting with x (Figure 5 (a)).

Figure 5: (a) A P_5 -covering; (b) A P_6 -covering; (c) A P_7 -covering; (d) A P_8 -covering.

Lemma 10 Let R be a set of three red points and B a set of three blue points in the plane, and let x be a red vertex of $conv(R \cup B)$. If a blue vertex of $conv(R \cup B - \{x\})$ is visible from x, then there exists a P_6 -covering of $R \cup B$ starting with x (Figure 5 (b)).

Proof. Let y be a blue vertex of $conv(R \cup B - \{x\})$ that is visible from x. If a red vertex of $conv(R \cup B - \{x, y\})$ is visible from y, then by Lemma 9, there exists a P_5 -covering of $R \cup B - \{x\}$ starting with y, which implies the existence of the desired P_6 -covering of $R \cup B$. So we may assume that all the vertices of $conv(R \cup B - \{x, y\})$ visible from y are blue points. Then there are exactly two such blue vertices, and at least one of them, say y_1 , is visible from x, and at least one red vertex of $conv(R \cup B - \{x, y\})$ is visible from y_1 (Figure 5 (b)). Then by Lemma 9, there exists a P_6 -covering of $R \cup B$ starting with x. \Box

Lemma 11 Let R be a set of four red points and B a set of three blue points in the plane, and let x be a red vertex of $conv(R \cup B)$. If a blue vertex of $conv(R \cup B - \{x\})$ is visible from x, then there exists a P₇-covering of $R \cup B$ starting with x (Figure 5 (c)).

Proof. Let y be a blue vertex of $conv(R \cup B - \{x\})$ that is visible from x. If a red vertex of $conv(R \cup B - \{x, y\})$ is visible from y, then by applying Lemma 10 to $R \cup B - \{x\}$ and y, we can obtain the desired P_7 -covering of $R \cup B$ starting with x. So we may assume that all the vertices of $conv(R \cup B - \{x, y\})$ that is visible from y are blue points. Then there exist exactly two such blue vertices, and at least one of them, say y_1 , is visible from x, and at least one red vertex of $conv(R \cup B - \{x, y\})$ is visible from y_1 . Then by Lemma 10, there exists a P_7 -covering of $R \cup B$ starting with x. \Box

Lemma 12 Let R be a set of four red points and B a set of four blue points in the plane, and let x be a red vertex of $conv(R \cup B)$. If a red vertex and a blue vertex of $conv(R \cup B - \{x\})$ are both visible from x, then there exists a P_8 -covering of $R \cup B$ starting with x (Figure 5 (d)).

Proof. There exist a red vertex x_1 and a blue vertex y_1 of $conv(R \cup B - \{x\})$ such that both of them are visible from x and x_1y_1 is an edge of $conv(R \cup B - \{x\})$. It is obvious that x_1 is a red vertex of $conv(R \cup B - \{x, y_1\})$ which is visible from y_1 . Hence by Lemma 11, there exists the required P_8 -covering of $R \cup B$ starting with x. \Box

Proof of Theorem 7. Suppose that $|R| = \lceil n/2 \rceil$ and $|B| = \lfloor n/2 \rfloor$. If $2 \le n \le 6$, then we can easily show the existence of the required P_n -covering of $R \cup B$ by similar arguments in the case of n = 7, which is given below. Hence we may assume that $7 \le n \le 12$ or n = 14. We consider several cases corresponding to the value of n.

Case 1. n = 7.

By the Ham-Sandwich Theorem, there exists a bisector l such that l passes through exactly one blue point, say y, and each of left(l) and right(l) contains exactly two red points and one blue point. Let $R_1 \cup B_1 = (R \cup B) \cap left(l)$. Since y is a vertex of $conv(R_1 \cup B_1 \cup \{y\})$, by Lemma 8 there exists a P_4 -covering of $R_1 \cup B_1 \cup \{y\}$ starting with y. Similarly, there exists a P_4 -covering of $((R \cup B) \cap right(l)) \cup \{y\}$ starting with y. Hence there exists the desired P_7 -covering of $R \cup B$.

Case 2. n = 8.

Suppose that $R \cup B$ is bisected by a line l so that a red vertex x of $conv((R \cup B) \cap left(l))$ and a blue vertex y of $conv((R \cup B) \cap right(l))$ are visible from each other (Figure 6 (a)). Then by Lemma 8, there exist a P_4 -covering of $(R \cup B) \cap left(l)$ starting with x and a P_4 -covering of $(R \cup B) \cap right(l)$ starting with y. By connecting these two paths by an edge xy, we obtain the desired P_8 -covering of $R \cup B$. Hence we may assume that there exists no such a bisector l of $R \cup B$.

Let l_1 be a bisector, and let $R_1 \cup B_1 = (R \cup B) \cap left(l_1)$ and $R_2 \cup B_2 = (R \cup B) \cap right(l_1)$. By the above assumption, if a vertex of $conv(R_1 \cup B_1)$ and a vertex of $conv(R_2 \cup B_2)$ are visible from each other, then they must have the same color. So, without loss generality, we may assume that these vertices are red. Take a tangent line to $conv(R_1 \cup B_1)$ and $conv(R_2 \cup B_2)$, which passes through two red vertices, and rotate it slightly, then we obtain a new bisector l_2 for which the partition $R \cup B = ((R \cup B) \cap left(l_2)) \cup ((R \cup B) \cap right(l_2))$ does not satisfy the above assumption (Figure 6 (b)). Therefore the case is proved.

Figure 6: (a) A P_8 -covering; (b) A bisector l_2 ; (c) A P_9 -covering; (d) A P_{10} -covering; (e) A P_{11} -covering in Subcase 5.1; (f) Bisectors l, l_1, l_2 in Subcase 5.2.

Case 3. n = 9.

Let l_1 be a bisector, which passes through one red point, say x. Let $R_1 \cup B_1 = (R \cup B) \cap left(l_1)$ and $R_2 \cup B_2 = (R \cup B) \cap right(l_1)$. If a blue vertex of $conv(R_1 \cup B_1)$ and a blue vertex of $conv(R_2 \cup B_2)$ are both visible from x, then there exists a P_9 -covering of $R \cup B$ by Lemma 9. Thus we may assume that every vertex of $conv(R_1 \cup B_1)$ visible from x is red. Hence every red point of $R_1 = \{x_1, x_2\}$ is a vertex of $conv(R_1 \cup B_1)$ and visible from x (Figure 6 (c)). If a blue vertex y of $conv(R_2 \cup B_2)$ is visible from x_1 or x_2 , then at least one of yx_1 and yx_2 intersects $conv(R_1 \cup B_1 \cup \{x\})$ in exactly one point x_1 or x_2 , and so by Lemmas 8 and 10, we can obtain the desired P_9 -covering of $R \cup B$. Hence we may assume that every vertex of $conv(R_2 \cup B_2)$ that is visible from x_1 or x_2 is red, which implies that the two red points of R_2 are vertices of $conv(R_2 \cup B_2)$ and visible from x_1 or x_2 . Similarly, we may assume that every vertex of $conv(R_1 \cup B_1)$ visible from a red point of R_3 is red.

Let $R_3 = \{x_3, x_4\}$. Then there exists a bisector l_2 of $R \cup B$ such that $left(l_2) \cap R = \{x_1, x_3\}$ or $right(l_2) \cap R = \{x_2, x_4\}$ (Figure 6 (c)). By symmetry, we may assume that l_2 satisfies $left(l_2) \cap R = \{x_1, x_3\}$, which implies l_2 passes through exactly one point of $\{x, x_2, x_4\}$, say x'. Since a blue vertex of $conv((R \cup B) \cap left(l_2))$ is visible from x', we can obtain a P_9 -covering of $R \cup B$ by the above same argument as above.

Case 4. n = 10.

Let l be a bisector of $R \cup B$. Then l passes through one red point, say x, and one blue point, say y. Let $R_1 \cup B_1 = (R \cup B) \cap left(l)$ and $R_2 \cup B_2 = (R \cup B) \cap right(l)$. Without loss of generality, a red vertex x_1 of $conv(R_1 \cup B_1)$ is visible from y since otherwise a blue vertex of $conv(R_1 \cup B_1)$ is visible from x. By Lemma 9, $R_1 \cup B_1 \cup \{y\}$ has a P_5 -covering starting with y (Figure 6 (d)). Since x is a red vertex of $conv(R_2 \cup B_2 \cup \{x\})$ that is visible from y, by Lemma 10, $R_2 \cup B_2 \cup \{x, y\}$ has a P_6 -covering starting with y. Consequently, $R \cup B$ has a P_{10} -covering.

Case 5. n = 11.

Subcase 5.1. There exists a line l such that l passes through one red point and one blue point, $(R \cup B) \cap left(l)$ consists of three red points and two blue points, and $(R \cup B) \cap right(l)$ consists of two red points and two blue points (Figure 6 (e)).

Let x and y be the red point and the blue point on the line l, respectively, and let $R_1 \cup B_1 = (R \cup B) \cap left(l)$ and $R_2 \cup B_2 = (R \cup B) \cap right(l)$. If a red vertex of $conv(R_1 \cup B_1)$ is visible from y, then by Lemma 10, $R_1 \cup B_1 \cup \{y\}$ has a P_6 -covering starting with y. Moreover, by Lemma 10, $R_2 \cup B_2 \cup \{x, y\}$ has a P_6 -covering starting with y, and so we can obtain the desired P_{11} -covering of $R \cup B$. Hence we may assume that every vertex of $conv(R_1 \cup B_1)$ visible from y is blue. Similarly, if a blue vertex of $conv(R_2 \cup B_2)$ is visible from x, then by Lemma 9, $R_2 \cup B_2 \cup \{x\}$ has a P_5 -covering starting with x. Moreover, by Lemma 11, $R_1 \cup B_1 \cup \{x, y\}$ has a P_7 -covering starting with x, and hence there exists the desired P_{11} -covering of $R \cup B$. Thus we may assume that every vertex of $conv(R_2 \cup B_2)$ visible from x is red. Therefore there exist $y_1 \in B_1$ and $x_1 \in R_2 \cup \{x\}$ such that y_1x_1 intersects $conv(R_1 \cup B_1 \cup \{y\})$ in exactly one point x_1 (Figure 6 (d)). Since a red vertex of $conv(R_1 \cup B_1 \cup \{y\})$ is visible from y_1 , by Lemma 10, $R_1 \cup B_1 \cup \{y\}$ has a P_6 -covering starting with y_1 . Similarly, $R_2 \cup B_2 \cup \{x\}$ has a P_5 -covering starting with y_1 . Therefore $R \cup B$ has the desired P_{11} -covering.

Subcase 5.2. There exists no line l such that l passes through one red point and one blue point, $(R \cup B) \cap left(l)$ consists of three red points and two blue points, and $(R \cup B) \cap right(l)$ consists of two red points and two blue points.

Let l_1 be a bisector, which passes through one blue point, say y. By the assumption of this subcase, when we rotate l_1 clockwise around y until it is tangent to $conv((R \cup B) \cap right(l_1))$ or $conv((R \cup B) \cap left(l_1))$, it must be tangent at a blue vertex. Without loss of generality, we may assume that it is tangent to $conv((R \cup B) \cap right(l_1))$ at a blue vertex, say y_1 (Figure 6 (f)). Then by a small rotation of the tangent line around y_1 , we can obtain a new bisector l_2 such that $(R \cup B) \cap left(l_2) = (R \cup B) \cap left(l_1)$ and $(R \cup B) \cap right(l_2) = ((R \cup B) \cap right(l_1)) \cup \{y\} - \{y_1\}$ (Figure 6 (f)). We repeat the above procedure one more time or two more times until we can get a bisector l_3 that passes through a blue vertex y_2 of $conv((R \cup B) \cap left(l_2))$ (Figure 6 (f)). However, this bisector l_3 does not satisfy the assumption of this subcase, which implies that the proof of the subcase is complete.

Case 6. n = 12.

We consider two subcases.

Subcase 6.1. There exists a line l such that l passes through one red point and one blue point, $(R \cup B) \cap left(l)$ consists of two red points and three blue points, and $(R \cup B) \cap right(l)$ consists of three red points and two blue points (Figure 7 (a)).

Let x and y be the red point and the blue point on l, respectively, and let $R_1 \cup B_1 = (R \cup B) \cap left(l)$ and $R_2 \cup B_2 = (R \cup B) \cap right(l)$. If a blue vertex of $conv(R_1 \cup B_1)$ is visible from x, then by Lemma 10, $R_1 \cup B_1 \cup \{x\}$ has a P_6 -covering starting with x. Moreover, by Lemma 11, $R_2 \cup B_2 \cup \{x, y\}$ has a P_7 -covering starting with x, and so there exists the desired P_{12} -covering of $R \cup B$. Hence we may assume that every vertex of $conv(R_1 \cup B_1)$ visible from x is red. By symmetry, if a red vertex of $conv(R_2 \cup B_2)$ is visible from y, then we can obtain the desired P_{12} -covering of $R \cup B$. Hence we may assume that every vertex of conv $(R_2 \cup B_2)$ visible from y is blue. Therefore we can find two points $x_1 \in R_1$ and $y_1 \in B_2$ such that x_1y_1 intersects $conv(R_1 \cup B_1 \cup \{x\})$ in exactly one point x_1 and intersects $conv(R_2 \cup B_2 \cup \{y\})$ in exactly one point y_1 . Since $R_1 \cup B_1 \cup \{x\}$ has a P_6 -covering starting with x_1 and $R_2 \cup B_2 \cup \{y\}$ has a P_6 -covering starting with y_1 , we can obtain the desired P_{12} -covering these paths by x_1y_1 .

Figure 7: (a) A configuration of Subcase 6.1; (b) Bisectors l_1 and l_2 ; (c) A configuration of Subcase 6.2.

Subcase 6.2. There exists no line l such that l passes through one red point and one blue point, $(R \cup B) \cap left(l)$ consists of two red points and three blue points, and $(R \cup B) \cap right(l)$ consists of three red points and two blue points (Figure 7 (b)).

Let l_1 be a bisector, which passes through no red and blue points. If we rotate l_1 clockwise until it is tangent to both $conv((R \cup B) \cap left(l_1))$ and $conv((R \cup B) \cap left(l_2))$

 $right(l_1)$), then the line passes through two vertices with the same colors since otherwise the assumption of the subcase does not hold for the tangent line. By a small rotation of the tangent line around its midpoint, we can obtain a new bisector l_2 (Figure 7 (b)). By repeating this procedure at most two more times, we can find a bisector l such that $(R \cup B) \cap left(l)$ and $(R \cup B) \cap right(l)$ have two common tangent lines that pass through two red vertices or two blue vertices each (Figure 7 (c)). Let $R_3 \cup B_3 = (R \cup B) \cap left(l)$ and $R_4 \cup B_4 = (R \cup B) \cap right(l)$. Then we can find four points $x_1 \in R_3, y_1 \in B_3, x_2 \in$ $R_4, y_2 \in R_4$ such that x_1y_1 is an edge of $conv(R_3 \cup B_3), x_2y_2$ is an edge of $conv(R_4 \cup B_4)$, and x_1y_2 intersects $conv(R_3 \cup B_3)$ and $conv(R_4 \cup B_4)$ in exactly one point x_1 and y_2 , respectively. Then by Lemma11, $R_3 \cup B_3$ has a P_6 -covering starting with x_1 and $R_4 \cup B_4$ has a P_6 -covering starting with y_2 , and thus $R \cup B$ has the desired P_{12} -covering.

Case 7. n = 14.

Let l be a bisector. Then l passes through one red point, say x, and one blue point, say y. Let $R_1 \cup B_1 = (R \cup B) \cap left(l)$ and $R_2 \cup B_2 = (R \cup B) \cap right(l)$. By symmetry, we may assume that a red vertex x_1 of $conv(R_1 \cup B_1)$ is visible from both x and y. If a blue vertex of $conv(R_2 \cup B_2)$ is visible from x, then by Lemma 11, both $R_1 \cup B_1 \cup \{y\}$ and $R_2 \cup B_2 \cup \{x\}$ have P_7 -coverings starting with y and x, respectively, and so $R \cup B$ has a P_{14} -covering. Hence we may assume that every vertex of $conv(R_2 \cup B_2)$ visible from x is red, which implies that there exists a red vertex, say x_2 , of $conv(R_2 \cup B_2)$ which is visible from both x and y. Since x_2 is visible from y, by the same argument as above, we can prove that we may assume every vertex of $conv(R_1 \cup B_1)$ visible from x is a red point. If a blue vertex of $conv(R_1 \cup B_1)$ is visible from y, then by applying Lemma 12 to $R_1 \cup B_1 \cup \{y\}, R_1 \cup B_1 \cup \{y\}$ has a P_8 -covering starting with y. By Lemma 11, $R_2 \cup B_2 \cup \{y\}$ has a P_7 -covering starting with y. Therefore $R \cup B$ has the desired P_{14} -covering. Thus we may assume that every vertex of $conv(R_1 \cup B_1)$ visible from y is red. By symmetry, we may also assume that every vertex of $conv(R_1 \cup B_1)$ visible from y is red.

We consider the two subcases.

Figure 8: (a) A configuration of Subcase 7.1; (b) A configuration of Subcase 7.2; (c) A configuration of $((R \cup B) \cap left(l)) \cup \{x\}$.

Subcase 7.1. Three vertices of $conv(R_1 \cup B_1)$ are visible from x or y.

Without loss of generality, we may assume that the line l is horizontal and directed from left to right, and y lies to the left of x (Figure 7 (a)). Let x_3 be the left most vertex of $conv(R_1 \cup B_1)$ that is visible from y. Then x_3 is a red point, and a blue vertex of $conv((R_1 \cup B_1 \cup \{x\}) - \{x_3\})$ is visible from x_3 . Thus by Lemma 11, $R_1 \cup B_1 \cup \{x\}$ has a P_7 -covering starting with x_3 . Similarly, $R_2 \cup B_2 \cup \{y\}$ has a P_7 -covering starting with y. By connecting these two paths by x_3y , we obtain the desired P_{14} -covering of $R \cup B$.

Subcase 7.2. Exactly two vertices of $conv(R_1 \cup B_1)$ are visible from x or y.

It is shown as in the proof of the above subcase that we may assume that the two vertices of $conv(R_1 \cup B_1)$ visible from x or y are red points (Figure 7 (b)). Of course, these points visible from both x and y. We denote these red points by x_1 and x_2 , and the remaining red point of R_1 by x_3 . By the same argument as in the proof of the above subcase, we may assume that no blue vertex of $conv(R_1 \cup B_1 - \{x_i\})$ is visible from x_i for every $i \in \{1, 2\}$ since both x_1 and x_2 are visible from y. However, there exists no such a configuration. Consequently the proof is complete. \Box

References

- I. Bárány and J. Matoušek, Simultaneous partitions of measures by k-fans, Discrete Comput. Geom. 25 (2001)317–334.
- [2] S. Bespamyatnikh, D. Kirkpatrick and J. Snoeyink, Generalizing ham sandwich cuts to equitable subdivisions, *Discrete Comput. Geom.* 24 (2000) 605–622.
- [3] J. Goodman and J. O'Rourke, Handbook of Discrete and Computational Geometry, CRC Press, p.211 (1997)
- [4] H. Ito, H. Uehara, and M. Yokoyama, 2-dimential ham-sandwich theorem for partitioning into three convex pieces, *Discrete and Computational Geometry* (LNCS 1763), (2000) 129–157.
- [5] A. Kaneko, and M. Kano, Balanced partitions of two sets of points in the plane, *Computational Geometry: Theory and Applications*, **13** (1999) 253-261.
- [6] A. Kaneko, and M. Kano, A balanced partition of points in the plane and tree embedding problems, preprint
- [7] A. Kaneko, and M. Kano, Generalized balanced partitions of two sets of points in the plane, *Discrete and Computational Geometry* (LNCS **2098**), (2001) 176-186.
- [8] L.C. Larson, Problem-Solving Through Problems, (Springer, New York), (1983) 200– 201.
- [9] T. Sakai, Balanced Convex Partitions of Measures in \mathbb{R}^2 , to appear in *Graphs and Combinatorics*.