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Abstract

In this paper, we give a short survey on discrete geometry on red and blue points in the plane, most of
whose results were obtained in the past decade. We consider balanced subdivision problems, geometric
graph problems, graph embedding problems, Gallai-type problems and others.

1 Notation and Definitions

In this paper, we give a short survey on discrete geometry on red and blue points in the plane, most of
whose results were obtained in the past decade. We consider two disjoint sets R and B of red points
and of blue points in the plane, respectively, such that no three points of R ∪ B lie on the same line.
Throughout this paper, R and B always denote the sets mentioned above unless noted otherwise.

We begin with some notation and definitions, which will be used throughout this paper. A (directed)
line l trisects the plane into three pieces: l, right(l) and left(l), where right(l) and left(l) denote the
open half-planes which are on the right side and on the left side of l, respectively (Figure 1). Let r1 and
r2 be two rays emanating from the same point p. Then we denote by right(r1)∩ left(r2) the open region
that is swept by the ray being rotated clockwise around p from r1 to r2 (Figure 1). The open region
left(r1) ∩ right(r2) is similarly defined. Then r1 ∪ r2 trisects the plane into three pieces: r1 ∪ r2 and
two open regions right(r1) ∩ left(r2) and left(r1) ∩ right(r2). If the internal angle ∠r1pr2 = ∠r1r2 of
right(r1) ∩ left(r2) is less than π, then we call right(r1) ∩ left(r2) the wedge defined by r1 and r2, and
denote it by wedge(r1r2), wedge(r2r1), wedge(r1pr2) or wedge(r2pr1).
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Figure 1: Open regions right(l), left(l), left(r1) ∩ right(r2) and wedge(r1r2) = wedge(r1pr2), the rays
r and r∗, and the line l∗.

Given a point p and a line l passing through p, let l∗ denote the line lying on l and having the opposite
direction of l. We define the rays r and r∗ to be the two rays emanating from p and lying on the line l,
while having the direction of l and l∗ respectively (Figure 1). Conversely, given a ray r, we can define r∗,
l and l∗.

For a set X of points in the plane, let conv(X) denote the convex hull of X , which is the smallest
convex set containing X . For convenience, a region in the plane whose boundary consists of straight-
line segments is called a polygon even if it is an infinite region. For example, Figure 2 (b) illustrates a
subdivision of the plane into seven convex polygons.
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2 Balanced Subdivisions

In this section we consider problems of subdivisions of the plane into convex polygons such that (i) each
polygon contains exactly a red points and b blue points, (ii) each polygon contains ani red points and
bni blue points, or (iii) polygons satisfy other prescribed conditions, where a and b are constant positive
integers independent of polygons and ni is a positive integer depending on each polygon. A famous
classical theorem on this problem is the following Ham-sandwich Theorem.

Theorem 2.1 (Ham-sandwich Theorem [17]). For given R and B, there exists a line l such that
|left(l) ∩ R| = |right(l) ∩ R|, |l ∩ R| ≤ 1, |left(l) ∩ B| = |right(l) ∩ B| and |l ∩ B| ≤ 1 (Figure 2 (a)).
If both |R| and |B| are even, then l passes through no red points and no blue points, and thus l bisects R
and B. Moreover, there exists a linear time O(|R| + |B|) algorithm for finding line l [31].

The line l given in the above Ham-sandwich Theorem is called a bisector line, and the subdivision of
the plane by a bisector line is called a Ham-sandwich cutting.

Before considering balanced subdivisions, let us give a result on balanced undirected lines. When
|R| = |B|, an undirected line l is said to be balanced if each open half-plane bounded by l contains
precisely the same number of red points as blue points. Then if |R| = |B|, an undirected bisector line is
balanced. The following theorem gives an lower bound of the number of balanced undirected lines, and
thus settles a conjecture of G. Baloglou.

Theorem 2.2 (Pach and Pinchasi [36]). If |R| = |B| = n, then there exist at least n balanced undi-
rected lines each of which passes through one red point and one blue point.

Note that if |R| = |B| = n and R and B are separated by a line, then there exists exactly n balanced
undirected lines determined by them, and so the above lower bound n is best possible.

The following theorem, which was conjectured in [21] and proved for a = 1, 2 in [21] and [26], was
completely proved by Bespamyatnikh, Kirkpatrick and Snoeyink [7], Sakai [39] and by Ito, Uehara and
Yokoyama [19] independently. Note that for g = 2, it is equivalent to the Ham-Sandwich Theorem above.

Theorem 2.3 (The Equitable Subdivision Theorem [7], [39], [19]). Let a ≥ 1, b ≥ 1 and g ≥ 2
be integers. If R contains ag red points and B contains bg blue points, then there exists a subdivision
X1 ∪X2 ∪ · · · ∪Xg of the plane into g disjoint convex polygons such that every Xi contains exactly a red
points and b blue points (Figure 2 (b)).
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Figure 2: (a) A Ham-sandwich cutting; (b) An equitable subdivision.

Such a subdivision of the plane is called an equitable subdivision of the plane. An algorithm for finding
an equitable subdivision of the plane with time complexity O(n4/3 log3 n log g), where n = (a+ b)g, was
obtained by Bespamyatnikh, Kirkpatrick and Snoeyink [7].

Theorem 2.4 (Kaneko, Kano and Suzuki [27]). Let a ≥ 1, g ≥ 0 and h ≥ 0 be integers such that
g + h ≥ 1. If R contains ag + (a + 1)h red points and B contains (a + 1)g + ah blue points, then there
exists a subdivision X1 ∪ · · · ∪Xg ∪ Y1 ∪ · · · ∪ Yh of the plane into g + h disjoint convex polygons such
that every Xi (1 ≤ i ≤ g) contains exactly a red points and a + 1 blue points and every Yj (1 ≤ j ≤ h)
contains exactly a+ 1 red points and a blue points (Figure 3 (b)).
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Figure 3: (a), (b) R ∪B and a subdivision from Theorem 2.4; (c) A configuration having no subdivision
with a = 1, b = 3 and g = h = 2..

The above theorem naturally suggests the following problem. Let a ≥ 1 and b ≥ a+ 2 be integers. If
R contains ag + bh red points and B contains bg + ah blue points, then does there exist a subdivision
X1 ∪ · · · ∪Xg ∪ Y1 ∪ · · · ∪ Yh of the plane into g+ h disjoint convex polygons such that every Xi contains
exactly a red points and b blue points and every Yj contains exactly b red points and a blue points?
However this statement does not hold since for a configuration in which ag + bg red points and bg + ag
blue points alternately lie on a circle, there exists no subdivision mentioned above (Figure 3 (c)).

The Ham-sandwich Theorem, the Equitable Subdivision Theorem and Theorem 2.4 may be applied
to some problems on geometry on red and blue points in the plane. We give such an example.

It is well-known ([30]) that given R ∪B with |R| = |B|, there exists a non-crossing geometric perfect
matching on R ∪B, that is, there exist |R| disjoint straight-line segments which connect red points and
blue points and have no crossings. This result can be easily proved by using the Ham-sandwich Theorem
and induction on |R|. That is, if |R| is odd, then a straight-line segment lying on the bisector line l whose
endpoints are the red point and the blue point on l is chosen to be an element of a perfect matching, and
it is obvious how to apply the induction hypotheses in the case where |R| is even.

We can generalize this problem to the following problem, which is called a non-crossing geometric
alternating path-covering problem (Figure 4 (a)). We denote by Pk the path with k vertices and length
k − 1 that passes through red points and blue points alternately. For a constant integer n and for given
R and B, do there exist disjoint non-crossing geometric alternating paths Pn which cover R ∪ B? If
Pn = P2m and |R| = |B| = mg, then we first apply the Equitable Subdivision Theorem to R ∪ B, and
obtain the equitable subdivision of the plane in which each convex polygon contains m red points and m
blue points. Thus if we can show that for every arrangement of m red points and m blue points in the
plane in general position, there exists a non-crossing geometric alternating path P2m that passes through
all these red and blue points, the above problem is affirmatively solved.

When we consider the above problem with path P2m+1, R must contain mg+(m+1)h red points and
B must contain (m+ 1)g +mh blue points, where integers g and h correspond to the numbers of paths
P2m+1 whose both endpoints are blue points or red points, respectively. In this case, we first obtain a
subdivision of the plane by Theorem 2.4, and if we can show that for every arrangement of m red points
and m+ 1 blue points in the plane in general position, there exists a non-crossing geometric alternating
path P2m+1 that passes through all these red and blue points, then the above problem is affirmatively
solved.

It is shown that if R and B are separated by a line and |R| = |B|, then there exists a non-crossing
geometric alternating path that passes through all the points in R ∪ B [1]. On the other hand, as we
show in Figure 4 (c), there exists a configuration consisting of six red points and seven blue points in
the plane for which there exists no non-crossing geometric alternating path P13 that passes through all
these 13 points. Considering this observation, we obtain the following theorem, which is easily proved
for 2 ≤ n ≤ 7 by the Ham-sandwich Theorem (Figure 5 (b)).

Theorem 2.5 ([27]). Suppose that 2 ≤ n ≤ 12. Then for any given �n/2	 red points and 
n/2� blue
points in the plane in general position, there exists a non-crossing geometric alternating path Pn that
passes through all these red and blue points.
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Figure 4: (a) A non-crossing geometric alternating P5-covering (b) A non-crossing geometric alternating
P7 and a bisector line l; (c) A configuration having no non-crossing geometric alternating path.

We now consider balanced subdivisions of the plane, in which the numbers of red points and blue
points are different depending on convex polygons.

Theorem 2.6 ([28]). Let m ≥ 1, n ≥ 1 and g ≥ 2 be integers such that m+ 2n = 2g + 1. If R contains
2g+1 red points and B contains (2g+1)b blue points, then there exists a subdivision X1∪X2∪· · ·∪Xm+n

of the plane into m + n disjoint convex polygons such that every Xi (1 ≤ i ≤ m) contains one red point
and b blue points and every Xj (m < j ≤ m+n) contains two red points and 2b blue points (Figure 5 (a)).

It is easy to see that if the above theorem holds for m = 1, then the theorem holds for every m, since
each convex polygon containing two red points and 2b blue points can be bisected by the Ham-sandwich
Theorem.

(b) (c)(a)

Figure 5: (a) A balanced subdivision from Theorem 2.6; (b) A balanced subdivision from Theorem 2.7; (c)
Configurations having no balanced subdivisions with (n1, n2) = (2, 1) and (n1, n2) = (3, 2), respectively.

Theorem 2.7 ([24]). Let 2 ≤ n ≤ 8, 1 ≤ b and 2 ≤ g be integers. If R contains n red points and B
contains bn blue points, then for every integer-partition n = n1 + n2 + . . . + ng such that 1 ≤ ni ≤ n/2
for every 1 ≤ i ≤ g, there exists a subdivision X1 ∪X2 ∪ · · · ∪Xg of the plane into g convex polygons such
that each Xi (1 ≤ i ≤ g) contains exactly ni red points and bni blue points.

Figure 5 (b) shows a balanced subdivision with (n1, n2, n3, n4) = (3, 2, 2, 1), Figure 5 (c) gives two
configurations R ∪B having no balanced subdivision with (n1, n2) = (2, 1) and (n1, n2) = (3, 2), respec-
tively. Similarly, if n/2 < n1 < n, then there exist configurations R ∪B having no balanced subdivision
with n = n1 + n2. Based on Theorems 2.6 and 2.7 and by some other configurations given in [24], we
propose the following conjecture.

Conjecture 2.8 ([24]). Let n = n1 + n2 + · · · + ng be an integer partition such that 1 ≤ ni ≤ n/3 for
every 1 ≤ i ≤ g. If |R| = an and |B| = bn, then there exists a subdivision X1 ∪X2 ∪ · · · ∪Xg of the plane
into g disjoint convex polygons such that each Xi (1 ≤ i ≤ g) contains exactly ani red points and bni blue
points.

The following theorem gives a subdivision, which might be called a semi-balanced subdivision.

Theorem 2.9 ([26]). Let m ≥ 0 be an integer, and let R = R1∪R2 be a partition of R with |R1| = s ≥ 0
and |R2| = t ≥ 0. If |B| = ms + (m + 1)t, then there exists a subdivision X1 ∪X2 ∪ · · · ∪Xs+t of the



plane into s+ t convex polygons such that each Xi (1 ≤ i ≤ s) contains one red point of R1 and m blue
points and each Xj(s < j ≤ s+ t) contains one red point of R2 and m+ 1 blue points.

We can consider a generalization of the above theorem by taking a partition R = R1 ∪ R2 ∪ R3 and
three integers m,m+ 1, m+ 2. But this generalization does not hold as shown in [26].

Bárány and Matoušek [5] consider balanced subdivisions of the plane by k-fan, and obtain simi-
lar results. Though they consider t Borel probability measure in the plane, here we consider t sets
X1, X2, . . . , Xt of points in the plane in general position. A k-fan is defined to be a point x in the
plane and k rays emanating from x, and by this k-fan, the plane is subdivided into k open regions
W1∪W2∪· · ·∪Wk, one of which may not be convex (Figure 6 (a)). A k-tuple of parallel lines is also con-
sidered to be a k-fan (this is a limit case for x receding to infinity). For a vector α = (α1, α2, . . . , αk) of
non-negative real numbers whose components sum up to 1, we say that a k-fan simultaneously α-partitions
X1, X2, . . . , Xt if

|Xi ∩Wj | = αj |Xi| for all 1 ≤ i ≤ t and 1 ≤ j ≤ k.

Note that when we consider a simultaneous α-partition, we always assume that αj |Xi| is an integer for
all i and j. In particular, a k-fan simultaneously ( 1

k ,
1
k , . . . ,

1
k )-partitions X1, X2, . . . , Xt if

|Xi ∩Wj | = 1
k
|Xi| for all 1 ≤ i ≤ t and 1 ≤ j ≤ k.

The following theorem was proved by using topological methods, and so it would be interesting to have
an elementary proof for it.

x
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Figure 6: (a) Two 3-fans; (b) R and B is simultaneously (1
3 ,

2
3 )-partitioned by a 2-fan with center x. (c)

R, B and Y is simultaneously (1
2 ,

1
2 )-partitioned by a 2-fan.

Theorem 2.10 (Bárány and Matoušek [5]). Let R, B, Y be three disjoint sets of red points, blue
points and yellow points in the plane, respectively, such that no three points of R∪B ∪Y lie on the same
line. Then the following statements hold.

(i) For any α = (α1, α2) and any point x in the plane, R and B can be simultaneously α-partitioned
by a 2-fan with center x.

(ii) For α = (1
2 ,

1
2 ) and for α = (2

3 ,
1
3 ), any R, B and Y can be simultaneously α-partitioned by a

2-fan.

(iii) Every R and B can be simultaneously (1
3 ,

1
3 ,

1
3 )-partitioned by a 3-fan, or (1

2 ,
1
4 ,

1
4 )-partitioned by

a 3-fan. They can also be (2
5 ,

1
5 ,

1
5 ,

1
5 )-partitioned by a 4-fan.

(iv) For any k ≥ 3 and any α, there exist R, B and Y that can not be simultaneously α-partitioned
by a k-fan.

Theorem 2.11 (Bárány and Matoušek [6]). Every R and B can be simultaneously (1
4 ,

1
4 ,

1
4 ,

1
4 )- par-

titioned by a 4-fan.

3 Proof Techniques

In this section we give some theorems and lemmas which are used in the proofs of some theorems on
balanced subdivisions from Section 2 and other geometric problems. We begin with the following lemma,
whose distinct proofs can be found in [7] and [24].



Lemma 3.1 (The Intermediate Line Lemma). Let k ≥ 0 be an integer. If there exist two lines l1
and l2 such that |left(l1) ∩R| = |left(l2) ∩R| and |left(l1) ∩B| ≤ k ≤ |left(l2) ∩B|, then there exists a
line l3 such that |left(l3)∩R| = |left(l1)∩R|, |left(l3)∩B| = k and l3 passes through no point in R∪B.

We now prove the Ham-sandwich Theorem by using the above Intermediate Line Lemma. For sim-
plicity, we assume that |R| and |B| are even. It is easy to find a line l with |left(l)∩R| = |right(l)∩R|,
which implies |left(l) ∩ R| = |left(l∗) ∩ R| = |R|/2. Without of loss generality, we may assume that
|left(l) ∩B| < |B|/2. Then

|left(l) ∩B| < |B|/2 < |left(l∗) ∩B|.

Hence by the Intermediate Line Lemma, there exists a line l3 satisfying |left(l3) ∩ R| = |R|/2 and
|left(l3) ∩B| = |B|/2, and thus l3 is the desired bisector line.

The following theorem, called the 3-cutting Theorem, is very powerful when we consider balanced
subdivision problems and other related problems. This theorem was originally proved by Bespamyatnikh,
Kirkpatrick and Snoeyink [7] under the assumption that

g1
h1

=
g2
h2

=
g3
h3
.

But as mentioned in [24], this condition can be removed without changing the arguments in the proof
given in [7]. Similar results, which seems to be essentially equivalent to the following 3-cutting Theorem,
were obtained in [39] and [19], respectively.

Theorem 3.2 (The 3-cutting Theorem). Let g1, g2, g3, h1, h2, h3 be positive integers such that |R| =
g1 + g2 + g3 and |B| = h1 + h2 + h3. Suppose that one of the following statements (i) and (ii) holds:

(i) For every integer i ∈ {1, 2, 3} and for every line l with |left(l) ∩R| = gi, |left(l) ∩B| < hi.

(ii) For every integer i ∈ {1, 2, 3} and for every line l with |left(l) ∩R| = gi, |left(l) ∩B| > hi.

Then there exists three rays emanating from a common point such that the three open regions Wi (1 ≤
i ≤ 3) defined by these three rays are wedges, and each wedge Wi (1 ≤ i ≤ 3) contains exactly gi red
points and hi blue points. Moreover, one of the three rays can be chosen to be a vertically downward ray
(Figure 7).
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W3g1  red points

less than hi
blue points

gi  red points

g2  red points

g3  red points

l  h1  blue points
 h3  blue points

 h2  blue points

Figure 7: A subdivision given in the 3-cutting theorem.

Now we prove the Equitable Subdivision Theorem using Lemma 3.1 and the 3-cutting Theorem.

Proof of the Equitable Subdivision Theorem [7]. We prove the theorem by induction on g. Let m be
an integer such that 1 ≤ m ≤ g − 1. If there exists a line l such that left(l) contains exactly am red
points and bm blue points, then by applying the inductive hypotheses to left(l) and right(l) respectively,
we can obtain the desired subdivision of the plane. Hence we may assume that for every line l with
|left(l) ∩ R| = am, it follows that |left(l) ∩ B| �= bm. By Lemma 3.1, this fact implies that for every
line l with |left(l)∩R| = am, either always |left(l)∩B| < bm holds or always |left(l)∩B| > bm holds.
Hence we can define sign(m) as

sign(m) = + if |left(l) ∩B| > bm for every line l with |left(l) ∩R| = am;



sign(m) = − if |left(l) ∩B| < bm for every line l with |left(l) ∩R| = am.

Without loss of generality, we may assume sign(1) = − since otherwise by exchanging the colors red
and blue, we have sign(1) = −. It is clear that sign(1) = − implies sign(g−1) = + since |left(l)∩R| = a
and |left(l) ∩ B| < b implies that |left(l∗) ∩ R| = (g − 1)a and |left(l∗) ∩ B| > (g − 1)b. Hence there
exists an integer 2 ≤ k ≤ g − 1 such that

sign(1) = · · · = sign(k − 1) = − and sign(k) = +.

Since sign(k) = +, we have sign(g − k) = −, and hence

sign(1) = sign(k − 1) = sign(g − k) = − and 1 + (k − 1) + (g − k) = g.

Therefore by the 3-cutting Theorem, the plane can be divided into three wedges W1 ∪W2 ∪W3 such that
W1,W2,W3 contain a red points and b blue points, a(k − 1) red points and b(k − 1) blue points, and
a(g − k) red points and b(g − k) blue points, respectively. By applying the inductive hypothesis to each
Wi, we can obtain the desired equitable subdivision of the plane.

The next lemma is used in the proofs of Theorems 4.4 and 4.5, and can be proved by induction on
|R|.
Lemma 3.3. Let |R| ≥ |B| ≥ 2 and let p be a point in the plane not contained in conv(R ∪ B) such
that no three points of R ∪B ∪ {p} lie on the same line. Suppose that two vertices of conv(R ∪B ∪ {p})
adjacent to p are blue points. Then there exist two rays r1 and r2 emanating from p such that (i) each
ri passes through exactly one red point, (ii) right(r1) ∩ left(r2) contains no points in R ∪ B, and (iii)
|(left(l1) ∪ l1) ∩R| = |left(l1) ∩B|. (Figure 8).

r1(l1) r2(l2)

p

Figure 8: Two rays r1 and r2 from Lemma 3.3.

4 Geometric Graphs

In this section we consider some problems on geometric graphs on red and blue points in the plane.
Readers who are interested in geometric graphs in the plane should refer to the book [34] by Pach and
Agarwal and the survey [33] by Pach.

A geometric graph is a graph drawn in the plane whose edges are straight-line segments. Let X be a
set of points in the plane in general position. Then a geometric spanning tree on X , denoted by tree(X),
is defined to be a spanning tree on X whose edges are straight-line segments connecting two points in
X . A geometric Hamiltonian path, path(X), on X and a geometric Hamiltonian cycle, cycle(X), on X
are defined analogously (Figure 9 (a),(b)). The geometric complete graph K(X) on X is defined to be a
graph whose vertex set is X and whose edge set consists of all the straight-line segments connecting any
two points of X . Then tree(X), path(X) and cycle(X) are a spanning tree, a Hamiltonian path and a
Hamiltonian cycle of K(X), respectively. For two disjoint sets X and Y of points in the plane, we define
the geometric complete bipartite graph K(X,Y ) as a graph whose vertex set is X ∪Y and whose edge set
consists of all the straight-line segments connecting any point in X and any point in Y . Thus it follows
that the disjoint union K(X) ∪K(Y ) ∪K(X,Y ) is the geometric complete graph K(X ∪ Y ).

We first consider the following problem. When we wish to draw red and blue geometric spanning
trees tree(R) and tree(B) on given R∪B so that the number of crossings in tree(R)∪ tree(B) is as small



as possible, how do we draw such spanning trees and what is the minimum number of crossings? This
problem is solved in the following theorem.

Theorem 4.1 (Tokunaga [42]). Let τ(R,B) denote the number of unordered pairs {x, y} of vertices
of conv(R ∪ B) such that one of {x, y} is red and the other is blue, and xy is an edge of conv(R ∪ B).
Then τ(B,R) is an even number, and the minimum number of crossings in tree(R) ∪ tree(B) among all
pairs (tree(R), tree(B)) is equal to

max{ τ(R,B) − 2
2

, 0}.

In particular, we can draw red and blue geometric spanning trees without crossings if and only if τ(B,R) ≤
2 (Figure 9 (a)). Furthermore, the proof gives a polynomial time algorithm for drawing tree(R)∪ tree(B)
with minimum number of crossings.

Theorem 4.2 (Tokunaga [42]). For given R and B, there exists a pair (path(R), path(B)) of red and
blue geometric Hamiltonian paths such that each edge of path(R) intersects at most one edge of path(B)
and vice versa. In particular, the number of crossings in path(R) ∪ path(B) is less than or equal to
min{|B|, |R|} − 1 (Figure 9 (b)).

(a) (b) (c) (d)

Figure 9: (a) tree(R), tree(B) and τ(R,B) = 6; (b) path(R) and path(B); (c) A geometric alternating
Hamiltonian cycle with two crossings; (d) A geometric alternating Hamiltonian cycle with |R|−1 crossings.

Theorem 4.3 (Dumitrescu and Kaye [11]). Let n = |R| + |B|. Then the following two statements
hold.

(i) For given R and B, there exists a non-crossing matching in K(R) ∪K(B) which covers at least
0.8571n points of R ∪B. There exists an algorithm for finding such a matching in O(n2) time.

(ii) There exists a configuration R∪B for which every non-crossing matching in K(R)∪K(B) covers
at most 0.9871n points of R ∪B.

We next consider geometric alternating spanning graphs on R ∪ B, whose edges connect red points
and blue points, that is, hereafter we deal with spanning subgraphs of K(R,B). For example, a geometric
alternating Hamiltonian cycle passes through all the points of R ∪ B and through red points and blue
points alternately.

Akiyama and Urrutia [4] considered a geometric alternating Hamiltonian cycle on a set of n red points
and n blue points lying on the same circle, and gave a O(n2) time algorithm for finding such a geometric
alternating Hamiltonian cycle (if it exists). An upper bound of the number of crossings of geometric
alternating Hamiltonian cycle is given in the following theorem.

Theorem 4.4 (Kaneko, Kano, Yoshimoto [25]). For R and B with |R| = |B|, there exists a geo-
metric alternating Hamiltonian cycle on R∪B that has at most |R|−1 crossings (Figure 9 (c)). Moreover
there exist configurations R ∪B for which this upper bound |R| − 1 is best possible (Figure 9 (d)).

As shown in Theorem 4.1, for sets R and B with τ(R,B) ≥ 4, every tree(R) ∪ tree(B) contains at
least one crossing. On the other hand, we can easily show by induction that for every sets R and B,
there exists a geometric alternating spanning tree on R ∪B that has no crossings. Namely, we can show



that K(R,B) contains a spanning tree without crossings. In 1996, Albellanas et al. [1] proved that if
|R| = |B|, then there exists a non-crossing geometric alternating spanning tree on R∪B whose maximum
degree is at most O(log |R|). Recently, Kaneko obtained the best upper bound for the maximum degree
of the tree mentioned above. In his proof, Lemma 3.3 plays an important role.

Theorem 4.5 (Kaneko [22]). For R and B with |R| = |B|, there exists a non-crossing geometric
alternating spanning tree on R ∪B whose maximum degree is at most three (Figure 10 (a)). This upper
bound is sharp.

The following theorem, which was conjectured in [22], has been recently proved by Kaneko.

Theorem 4.6. Let |R| ≤ |B| and k = 
|B|/|R|�. Then there exists a non-crossing geometric alternating
spanning tree on R ∪B whose maximum degree is at most k + 2.

(a) (b)

Figure 10: (a) A non-crossing spanning tree of K(R,B) with maximum degree at most three; (b) A
non-crossing Hamiltonian path of K(R,B′) for some B′ ⊂ B.

As stated in Theorem 4.4, geometric alternating Hamiltonian cycle and path may have many crossings
for some R∪B. However, if the number of blue points is much bigger than that of red points, can we then
choose a subset B′ of B such that there exists a non-crossing geometric alternating Hamiltonian path (or
cycle) on R ∪B′? The following theorem gives a partial answer to this question on a Hamiltonian path.

Theorem 4.7 (Kaneko and Kano [22]). Let |R| = n ≥ 3. If |B| ≥ (n+ 1)(2n − 4) + 1, then we can
find a subset B′ of B with n points such that there exists a non-crossing geometric alternating Hamiltonian
path on R ∪ B′ (Figure 10 (b)). Moreover, there exists a configuration of R ∪ B with |B| = n2

16 + n
2 − 1

for which no such subset B′ of B exists.

5 Graph embeddings

For a graph G, we denote by |G| the number of vertices of G. Given a planar graph G, let X be a set
of |G| points in the plane in general position. Then G is said to be line embeddable onto X if G can be
embedded in the plane so that every vertex of G corresponds to a point of X , every edge corresponds
to a straight-line segment, and no two straight-line segments intersect except possibly having a common
endpoint. A graph is called an outerplanar graph if it can be embedded in the plane so that every vertex
of G lies on the exterior region.

The following theorem is a basic result on line embedding problems. Note that its proof is not found
in [14], but Lemma 1 in Section 3 implies this theorem ([42]).

Theorem 5.1 (de Fraysseix, Pach and Pollack [14]). A planar graph G can be line embedded onto
an arbitrarily given set X of |G| points in the plane in general position if and only if G is an outerplanar
graph.

We now consider a line embedding on red and blue points. Let G be a planar graph with n specified
vertices v1, v2, . . . , vn, and X a set of |G| points in the plane in general position which contains n red
points p1, p2, . . . , pn and |G| − n blue points. Then we say that G is strongly line embeddable onto X or
G has a strong line embedding onto X if G can be line embedded onto X so that for every 1 ≤ i ≤ n,
vi corresponds to the red point pi (Figure 11). A tree with one specified vertex v is called a rooted tree
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Figure 11: (a) A rooted forest F with two components; (b) A strong line embedding of F ; (c) A rooted
star forest G; (d) A strong line embedding of G.

(b)

p1

p2

p1

p2

v1

v2

v2

v1

(a)
C X H Y

Figure 12: (a) A cycle C cannot be strongly line embedded onto X ; (b) A graph H cannot be strongly
line embedded onto Y .

with root v. Given n disjoint rooted trees Ti with root vi, 1 ≤ i ≤ n, the union T1 ∪ T2 ∪ · · · ∪ Tn, whose
vertex set is V (T1) ∪ V (T2) ∪ · · · ∪ V (Tn) and whose edge set is E(T1) ∪ E(T2) ∪ · · · ∪ E(Tn), is called a
rooted forest with roots v1, v2, . . . , vn, which are specified vertices of it.

Before giving our results, we remark that for a cycle C having two specified adjacent vertices and
for a set X of |C| − 2 blue points and two red points in the plane such that all the points of X lie on
a circle, and the two red points are not adjacent in conv(X), C cannot be strongly line embedded onto
X (Figure 12 (a)). Another such example is given in Figure 12 (b), where a graph H consisting of a
cycle C5 and a path P2 cannot be strongly line embedded onto Y . Hence, when we consider a strong line
embedding problem, we may restrict ourselves to rooted forests.

The following theorem, conjectured by Perles [38], was partially solved by Pach and Törőcsik [37],
and completely proved by Ikebe, Perles, Tamura and Tokunaga [20]. A simpler proof of it can be found
in Tokunaga [41]. Another related result can be found in [14].

Theorem 5.2. A rooted tree T can be strongly line embedded onto every set of |T | points in the plane
in general position containing one red point.

Theorem 5.3 ([23]). A rooted forest F consisting of two rooted trees can be strongly line embedded onto
every set of |F | points in the plane in general position containing two red points (see Figure 11 (a), (b)).
There exists an O(|F |2 log |F |) time algorithm for finding a strong line embedding.

It was conjectured that a rooted forest F consisting of three rooted trees can be strongly line embedded
onto every set of |F | points in the plane in general position containing three red points ([22]). But a
counter-example to this conjecture was found in [29].

A star K(1, k) (k ≥ 1) consists of the vertex set {x, y1, y2, . . . , yk} and the edge set {xy1, xy2, . . . , xyk},
where x is called its center and yi is called its end-vertex. The union of stars is called a star forest, and the
union of rooted stars, some of whose roots may be end-vertices, is called a rooted star forest (Figure 11 (c)).
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Figure 13: A rooted forest F , and its strong line embedding onto R ∪B.

Theorem 5.4. A rooted star forest F consisting of n rooted stars can be strongly line embedded onto
every set of |F | points in the plane in general position containing n red points (see Figure 11 (c), (d)).

By combining Theorem 2.9 and Theorem 5.2, we can obtain the next theorem.

Theorem 5.5. Let m be a positive integer, and let T1, T2, · · · , Tn be n disjoint rooted trees such that
|Ti| ∈ {m,m+ 1} for all 1 ≤ i ≤ n. Then the rooted forest F = T1 ∪ T2 ∪ · · · ∪ Tn can be strongly line
embedded onto every set of |F | points in the plane in general position containing n red points (Figure 13).

6 Gallai-type and Other Problems

In this section we consider R ∪B not necessarily in general position.

A well-known theorem of Gallai ([16], [40]) states that for any set S of points in the plane all of which
do not lie on the same line, there exists a line that passes through exactly two points of S. Such a line
is called an ordinary line. Csima and Sawyer [9] improved this result by showing that there are at least

6|S|/13� ordinary lines.

We now consider a similar problem on R ∪B. A line that passes through at least two red points and
no blue points or through at least two blue points and no red points is called a monochromatic line. On
the other hand, a line that passes through at least one red point and at least one blue point is called
a bichromatic line. A bichromatic ordinary line is a line that passes through exactly one red point and
one blue. It is easy to show that there exist configurations R ∪B for which there exists no bichromatic
ordinary lines (Figure 14 (a)). We beign with a result on monochromatic lines.

Theorem 6.1 (Chakerian [8], [2]). If R∪B does not lie on a line, then there exists a monochromatic
line.

The next theorem deals with the number of bichromatic lines.

Theorem 6.2 (Pach and Pinchasi [35]). Suppose |R| = |B| = n. Then there exists more than n/2
bichromatic lines that pass through at most two red points and at most two blue points. Furthermore,
the number of bichromatic lines passing through at most six points is at least m/10, where m is the total
number of connecting lines.

Conjecture 6.3 (Fukuda [15], [10]). If (i) R and B are separated by a line, and (ii) |R| and |B| differ
by at most one, then there exists a bichromatic ordinary line.

Note that the two conditions in the above conjecture are necessary. Namely, Figure 14 (a) and (b)
show that condition (i) is necessary, and (c) shows that the condition (ii) is necessary ([35]). Recently,
Finschi and Fukuda [13] showed that the above Conjecture 6.3 is true for |R ∪ B| ≤ 8, and found a
counter-example to the conjecture, which consists of five red points and four blue points.
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Figure 14: Configurations having no bichromatic ordinary lines.
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Figure 15: (A) R∪B that cannot be separated by a wedge; (b) A point x for which there exists a wedge
separating B and R; (c) The shaded region Shade(s) with respect s; (d) The region of points x for which
there exists a wedge separating B and R.

We next consider a separation problem. It is obvious that R and B can be separated by a line if and
only if conv(R) ∩ conv(B) = ∅. It is also easy to see that if conv(B) contains a red point and if conv(R)
contains a blue point, then R and B cannot be separated by a wedge (Figure 15 (a)). Thus when we
consider a wedge-separation, we may assume that conv(B) contains no red points. Then for a red point
s, if a point x is not contained in the shaded region in Figure 15 (c), then there exists a wedge with top
x that separates conv(B) and s. By this observation, we can obtain the following theorem.

Theorem 6.4 (Hurtado, Noy, Ramos and Seara [18]). Suppose that conv(B)∩R = ∅. For any red
point s ∈ R, we denote by Shade(s) the shaded region with respect s. Then there exists a wedge with top
x that separate R and B if and only if

x �∈
⋃
s∈R

Shade(s) ∪ conv(B)

(Figure 15 (d)).

We now turn our attention to a monochromatic partitioning problem. Given a S = R ∪B in general
position, let p(S) be the minimum number k of monochromatic subsets S = X1 ∪X2 ∪ · · · ∪Xk such that
conv(Xi) ∩ conv(Xj) = ∅ for all i �= j. Let

p(n) = max{p(S) | |S| = |R ∪B| = n}.
Then p(n) was recently determined as below.

Theorem 6.5 (Dumitrescu and Pach [12]).

p(n) =
⌈n+ 1

2

⌉
.



The following proposition was posed as a problem in the 27th International Mathematics Olympiad,
1986.

Proposition 6.6. Let P be n points with integer coordinates. Then each point of P can be colored red
or blue so that for every row and column, the number of red points on it differs from the number of blue
points on it by at most one. This coloring is called a balanced coloring.

This proposition can be proved by using graph theory as follows. Let X = {x1, . . . , xn} and Y =
{y1, . . . , ym} be the sets of integers such that for every 1 ≤ i ≤ n and 1 ≤ j ≤ m, P contains a point
with coordinate (xi, yt) and a point with coordinate (xs, yj) for some yt and xs. Then we construct the
bipartite graph B = B(X,Y ) with bipartition X ∪ Y in which xi ∈ X and yj ∈ Y are joined by an edge
if and only the point with coordinate (xi, yj) is contained in P . In particular, the exists a one to one
correspondence between the edges of B and the points of P . Then by a well-known theorem [32], every
edge of B can be colored red and blue so that for every vertex v of B, the number of red edges incident
with v differs from the number of blue edges incident with v by at most one. This implies the above
Proposition 6.6.

Akiyama and Urrutia [3] generalized the above proposition by considering anm-coloring, wherem ≥ 3.
This generalization also can be obtained by the same arguments as above since a similar result hold for
any m-edge-coloring of a bipartite graph.
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