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Abstract

Let G be a graph and f : V (G) → {1, 3, 5, . . .}. Then a subgraph H of G is called a
(1, f)-odd subgraph if degH(x) ∈ {1, 3, . . . , f(x)} for all x ∈ V (H). If f(x) = 1 for
all x ∈ V (G), then a (1, f)-odd subgraph is nothing but a matching. A (1, f)-odd
subgraph H of G is said to be maximum if G has no (1, f)-odd subgraph K such
that |K| > |H|. We show that (1, f)-odd subgraphs have some properties similar
to those of matchings, in particular, we give a formula for the order of a maximum
(1, f)-odd subgraph, which is similar to that for the order of a maximum matching.
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We consider finite graphs which have no loops and no multiple edges. Let G
be a graph with vertex set V (G) and edge set E(G). We denote by |G| the
order of G (i.e., |G| = |V (G)|). For a vertex v of G, we denote by degG(v) the
degree of v in G. For two vertices x and y of G, we write xy or yx for an edge
joining x to y. Let

f : V (G) −→ {1, 3, 5, 7, · · ·}

be an odd integer valued function defined on V (G), where we allow f(v) >
degG(v) for some vertices v, and f always denotes this function throughout this
paper. Then a subgraph H of G is called a (1, f)-odd subgraph if degH(x) ∈
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{1, 3, . . . , f(x)} for all x ∈ V (H). A spanning (1, f)-odd subgraph is called
a (1, f)-odd factor of G. If f(x) = 1 for all x ∈ V (G), then a (1, f)-odd
subgraph is a matching, and a (1, f)-odd factor is a 1-factor (i.e., a perfect
matching). Note that for convenience, we define a matching as a subgraph
with all degrees one. A (1, f)-odd subgraph H of G is said to be maximum if
G has no (1, f)-odd subgraph K with |K| > |H |. A subgraph with all degrees
odd is called an odd subgraph, and a spanning odd subgraph is called an odd
factor. In this paper, we shall show some results on (1, f)-odd subgraphs,
which are generalizations of those on matchings. Then we can expect that
some other results on matchings can be generalized to those on (1, f)-odd
subgraphs. However, there exist some theorems on matchings that cannot be
directly generalized. Such an example is given in Theorem 10. Some results
on (1, f)-odd factors, which are generalizations of results on 1-factors, can be
found in [4], [6] and [9].

A component of a graph is said to be odd or even according to the parity of its
order. We denote by o(G) the number of odd components of G. For two graphs
H and K, the join H +K denotes the graph with vertex set V (H)∪V (K) and
edge set E(H)∪E(K)∪{xy | x ∈ V (H) and y ∈ V (K)}. Let H 	K denote
the subgraph formed by the symmetric difference of the two edge sets, so
V (H	K) = V (H)∪V (K) and E(H	K) = (E(H)∪E(K))−(E(H)∩E(K)).
Let R be a subgraph of a graph G and X a subset of V (G). Then we say that
R covers X if V (R) ⊇ X, and that R avoids X if V (R)∩X = ∅. For subsets A
and B of a set X, if A is a subset B, then A−B denotes A \B, in particular,
X −A denotes X \A. Other notation and definitions not defined here can be
found in [1] or [8].

A criterion for a graph to have a (1, f)-odd factor is given in the following
theorem, which is a generalization of Tutte’s 1-factor Theorem ([8] p.84).

Theorem 1 ([4]) A graph G has a (1, f)-odd factor if and only if

o(G − S) ≤ ∑

x∈S

f(x) for all S ⊂ V (G) . (1)

We first give a formula for the order of a maximum (1, f)-odd subgraph, which
is similar to the following.

Theorem 2 (Berge [3]; [8] p.90) The order of a maximum matching M
of a graph G is given by

|M | = |G| − max
S⊆V (G)

{o(G − S) − |S|}.

Theorem 3 The order of a maximum (1, f)-odd subgraph H of a graph G is
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given by

|H | = |G| − max
S⊆V (G)

{o(G − S) − ∑

x∈S

f(x)}.

In order to prove the above theorem, we need the following lemma.

Lemma 4 ([7], p.54) Let G be a connected graph. Then the following state-
ments hold.
(i) If |G| is even, then G has an odd factor.
(ii) If |G| is odd, then G has an odd subgraph of order |G| − 1.

Proof. We give a short proof to (i). Let n be an odd integer such that
n ≥ |G| − 1, and define the function f by f(x) = n for all x ∈ V (G). Then by
Theorem 1, G has a (1, f)-odd factor, which is the required odd factor.

Statement (ii) is an easy consequence of (i) since G has a vertex v such that
G − {v} is connected. ✷

Proof of Theorem 3. Let H be a maximum (1, f)-odd subgraph of G, and
let d := maxS⊆V (G){o(G − S) − ∑

x∈S f(x)}. Then d ≥ 0 as o(G) ≥ 0, and
|G| + d is even since |G| ≡ o(G − S) + |S| ≡ d (mod 2).

For every odd component C of G−S, if V (C) is covered by H , then there exists
at least one edge of H that joins C to S. Thus at least o(G−S)−∑

x∈S degH(x)
odd components of G − S are not covered by H . This implies |H | ≤ |G| − d.

We next prove the reverse inequality. Let G′ := G + Kd be the join of G
and the complete graph Kd of order d, and define f ′ : V (G′) → {1, 3, . . .} by
f ′(x) = f(x) for all x ∈ V (G) and by f ′(x) = 1 for all x ∈ V (Kd). Then
o(G′) = 0 since |G| + d is even. Let X be a non-empty subset of V (G′). If
V (Kd) �⊆ X, then o(G′ − X) ≤ 1 ≤ ∑

x∈X f ′(x). If V (Kd) ⊆ X, then by the
definition of d, it follows that

o(G′ − X) = o(G − X ∩ V (G)) ≤ d +
∑

x∈X∩V (G)

f(x) =
∑

x∈X

f ′(x).

Hence by Theorem 1, G′ has a (1, f ′)-odd factor F ′. Let M := F ′ − V (Kd).
Then M is a spanning subgraph of G and has at most d vertices of even degree,
some of which may be isolated vertices of M . Therefore M has at most d odd
components.

By applying (i) or (ii) of Lemma 4 to each component of M according to
whether its order is even or odd, we obtain an odd subgraph H of M such
that |H | ≥ |M |−d = |G|−d. Since H is a (1, f)-odd subgraph of G, the proof
is complete. ✷
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Let H be a (1, f)-odd subgraph of a graph G. Then H is said to be maximal if
G has no (1, f)-odd subgraph H1 such that V (H) is a proper subset of V (H1).
Recall that H is said to be maximum if G has no (1, f)-odd subgraph H2

such that |H2| > |H |. Moreover, if H has a cycle C, then H − E(C) is also
a (1, f)-odd subgraph with vertex set V (H). By repeating this procedure, we
can obtain a (1, f)-odd subgraph H ′ which is a forest and whose vertex set is
V (H).

For a subgraph K of a graph G and edge subsets X ⊂ E(K) and Y ⊂
E(G) − E(K), we denote by K − X + Y the subgraph of G induced by
(E(K) − X) ∪ Y . A path in a graph G connecting two vertices x and y is
denoted by P (x, y) or PG(x, y).

We now show another property of (1, f)-odd subgraphs, which is a generaliza-
tion of the following property of matchings.

Theorem 5 ([5]; [8] p.88) Let G be a graph, and B and R be subsets of
V (G) such that |B| < |R|. If there exists a matching which covers B and one
which covers R, then there exists a matching which covers B and at least one
vertex of R \ B.

Theorem 6 Let G be a graph, and B and R be subsets of V (G) such that
|B| < |R|. If there exists a (1, f)-odd subgraph which covers B and one which
covers R, then there exists a (1, f)-odd subgraph which covers B and at least
one vertex of R \ B. In particular, every maximal (1, f)-odd subgraph is a
maximum (1, f)-odd subgraph.

Proof. Let HB and HR be (1, f)-odd subgraphs which cover B and R, re-
spectively. We may assume that both HB and HR are forests. If HB contains
a vertex in R \ B, then HB itself is the desired (1, f)-odd subgraph. Thus we
may assume that HB avoids R \ B (i.e., V (HB) ∩ (R \ B) = ∅). If an edge
e joins a vertex in R \ B to a vertex in V (G) − V (HB), then HB + e is the
desired (1, f)-odd subgraph. Hence we may assume that every neighbor of a
vertex of R \ B is in V (HB).

For convenience, we call the edges of HB and HR blue and red edges, respec-
tively. Let F := HB	HR−I, where I is the set of isolated vertices of HB	HR.
The red and blue degrees of a vertex v in F , which are the numbers of red
and blue edges of F incident with v, are denoted by degFr(v) and degFb(v),
respectively. Note that degFr(v) < degHR

(v) and degFb(v) < degHB
(v) if and

only if there is an edge in E(HR) ∩E(HB) incident with v. For v ∈ V (F ), let
m(v) = max{degFr(v), degFb(v)}. Since F has no isolated vertices, m(v) is a
positive integer.

We now construct a new graph F ′ from F in the following way. Corresponding
to each vertex v of F , we define one vertex v′ or m(v) vertices v′

1, v
′
2, . . . , v

′
m(v)
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of F ′, and for each edge e of F , we define one edge e′ with the same color as
e of F ′ and add some new red or blue edges to F ′ as follows:

Case (i) If v �∈ V (HR)∩V (HB) or m(v) = 1, then we define a vertex v′ of F ′.

Case (ii) If v ∈ V (HR) ∩ V (HB) and m(v) ≥ 2, then in F ′ we define m(v)
independent vertices, v′

1, v
′
2, . . . , v

′
m(v), that is, we split v into m(v) distinct

vertices of F ′.

In Case (i), if a blue or red edge e is incident with a vertex v in F , then let
an edge e′ with the same color as e be incident with v′ in F ′. In Case (ii),
for every blue edge e incident with v in F , we pick an arbitrary vertex from
v′
1, v

′
2, . . . , v

′
m(v) to be an endvertex of a blue edge e′ in F ′ but we pick a different

one for each blue edge. This is possible since m(v) ≥ degFb(v). We apply the
same procedure for the red edges. If m(v) = degFb(v) > degFr(v), then we
add some new red edges. In this case some vertices from v′

1, v
′
2, . . . , v

′
m(v) are

not covered by red edges. We claim that m(v)− degFr(v) is even. If there are
k edges incident with v in E(HB) ∩ E(HR), then

degFb(v) = degHB
(v) − k and degFr(v) = degHR

(v) − k,

which proves our claim since degHB
(v) − degHR

(v) is even. Therefore we can
cover the vertices of v′

1, v
′
2, . . . , v

′
m(v) not covered by red edges with a new set

of independent red edges, namely with a red matching (see Figure 1). Then
for every vertex of v′

1, v
′
2, . . . , v

′
m(v), exactly one red edge and one blue edge

are incident with it. Similarly if m(v) = degFr(v) > degFb(v), then an even
number of vertices of v′

1, v
′
2, . . . , v

′
m(v) are not covered by the blue edges, so we

cover these by a new blue matching.

v

v1’ v2’ v3’ v4’ v5’ v6’ v7’

a

a

b

b c c

d

d

e

e 

g

g

h

h

i

i
j

k
k

F
F’

m(v)=7

j

Fig. 1. A vertex v ∈ V (HR)∩V (HB) with m(v) = 7, and the vertices v′1, v′2, . . . , v′m(v)

of F ′

Let B′ and R′ be the set of those vertices of F ′ which correspond to vertices
of B and R, respectively. Also let F ′

b and F ′
r be the subgraphs induced by the

blue and red edges of F ′, respectively. It is easy to see that every vertex in
V (F ′

b) ∩ V (F ′
r) is incident with exactly one blue and one red edge, vertices of

5



V (F ′
b)\V (F ′

r) are not incident with any red edges and vertices of V (F ′
r)\V (F ′

b)
are not incident with any blue edges.

Recall that a trail is a walk such that all its edges are distinct. A trail con-
necting two vertices x and y is denoted by T (x, y). A trail T (x, y) of a graph
G is said to be maximal with respect to y if T (x, y) cannot be extended at y
by adding a new edge of G to T (x, y) (i.e., if degG(y) = degT (x,y)(y)).

Claim 7 If there exists a path in F ′ with one endvertex in R′ \ V (F ′
b) and

the other in V (F ′
r) \V (F ′

b) (such that these two endvertices are distinct), then
there exists an (1, f)-odd subgraph in G which covers B and at least one vertex
of R \ B.

Proof. Suppose that there exists a path in F ′ between R′\V (F ′
b) and V (F ′

r)\
V (F ′

b). Let P (x′, y′) be such a shortest path connecting two distinct vertices
x′ ∈ R′ \ V (F ′

b) and y′ ∈ V (F ′
r) \ V (F ′

b). Then it follows immediately from the
choice of P (x′, y′) that P (x′, y′) does not contain any vertex of V (F ′

r) \ V (F ′
b)

other than x′ and y′.

We change the color of every edge in the path P (x′, y′) from red to blue or
from blue to red, and take the resulting blue subgraph, which is denoted by
G′

b. The blue degree of x′ and y′ in G′
b became one. The blue degree of each

vertex in V (F ′
b) \ V (F ′

r) may be decreased by two, and thus still remains odd.
The blue degree of each vertex in V (F ′

b) ∩ V (F ′
r) does not change.

Now define Gb to be the subgraph formed by those edges of F which correspond
to edges of G′

b together with the edges in E(HB)∩E(HR), in particular, edges
in G′

b joining two vertices of v′
1, v

′
2, . . . , v

′
m(v) give rise to no corresponding edge

in Gb. We claim that Gb is the desired subgraph.

If a vertex v′ is not in the path P (x′, y′), then degGb
(v) = degHB

(v) ≤ f(v)
and it is odd. Clearly, degGb

(x) = 1 ≤ f(x) and degGb
(y) = 1 ≤ f(y), and

both are odd. Suppose that v′ is in P (x′, y′)−{x′, y′}. If v ∈ V (HB) \ V (HR),
we have degGb

(v) = degFb(v)− 2 = degHB
(v)− 2. If v ∈ V (HB)∩V (HR) then

degGb
(v) − degHB

(v) is even, and so degGb
(v) is odd, however, it is possible

that degGb
(v) > degHB

(v). This means that the path P (x′, y′) contains some
new blue edges connecting two vertices of v′

1, v
′
2, . . . , v

′
m(v). If it contains k such

edges then degGb
(v) ≤ 2k + degHB

(v) ≤ degHR
(v) ≤ f(v). Consequently, Gb

is a (1, f)-odd subgraph, and covers V (HB) and x ∈ R \ B. ✷

Claim 8 If there exists a trail T (x′, y′) in F ′ connecting x′ ∈ R′ \ V (F ′
b) and

y′ ∈ V (F ′
b) \ (B′ ∪ V (F ′

r)) such that T (x′, y′) is maximal with respect to y′,
then there exists an (1, f)-odd subgraph in G which covers B and at least one
vertex of R \ B.

Proof. Let T (x′, y′) be a trail in F ′ connecting x′ ∈ R′ \ V (F ′
b) and y′ ∈
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V (F ′
b) \ (B′ ∪ V (F ′

r)) such that T (x′, y′) is maximal with respect to y′.

Obviously, the degrees of x′ and y′ are odd in the trail, while the degree of
any other vertex in the trail is even. Moreover, the red degree of x′ is odd
since its blue degree is zero and the blue degree of y′ is odd and equal to
degF ′

b
(y′) = degHB

(y′) by the maximality of the trail.

If there exists a vertex z′ ∈ T (x′, y′) such that z′ ∈ V (F ′
r) \ V (F ′

b) and z′ �= x′,
then there exists a path in F ′ connecting x′ and z′. Thus by Claim 7, we can
find the desired subgraph. Therefore we may assume that T (x′, y′) does not
contain any vertex of V (F ′

r) \ V (F ′
b) other than x′, and thus the red degree of

each vertex of the trail, except x′, is at most one.

We change the color of every edge in the trail T (x′, y′) from red to blue or
from blue to red, and take the resulting blue subgraph, which is denoted by
G′

b. The blue degree of x′ became odd and at most degHR
(x) ≤ f(x), while the

blue degree of y′ is zero. The blue degree of any other vertex in V (F ′
b) \V (F ′

r)
may be decreased by an even number, and thus still remains odd. The blue
degree of vertices in V (F ′

b) ∩ V (F ′
r) does not change.

Now Gb is defined in the same way as in Claim 7. If a vertex v′ is not in
T (x′, y′), then degGb

(v) = degHB
(v) ≤ f(v) and it is odd. We clearly have that

degGb
(x) ≤ f(x) and it is odd. On the other hand we have degGb

(y) = 0, and so
y is not covered by Gb, but since y �∈ B this does not cause any problem. Sup-
pose that v′ is in T (x′, y′). Since for a vertex v ∈ V (HB) \V (HR), degHB

(v)−
degGb

(v) is even and non-negative, we have that degGb
(v) ≤ degHB

(v) ≤ f(v)
and degGb

(v) is odd. If v ∈ V (HB)∩ V (HR) then degHB
(v)− degGb

(v) is even
but it may be negative. This means that the trail T (x′, y′) contains some blue
edges connecting two vertices of v′

1, v
′
2, . . . , v

′
m(v). If it contains k such edges

then degGb
(v) ≤ 2k + degHB

(v) ≤ degHR
(v) ≤ f(v). Consequently, Gb is a

(1, f)-odd subgraph, and covers HB \ {y} ⊇ B and x ∈ R \ B. ✷

Now we are ready to prove Theorem 6. We may assume that neither the
conditions of Claim 7 nor those of Claim 8 hold. This means that for every
trail T (x′, y′) with x′ ∈ R′ \ V (F ′

b) which is maximal with respect to y′, we
have y′ ∈ B′ \ V (F ′

r) or y′ ∈ V (F ′
b) ∩ V (F ′

r). Since the degree of any vertex in
V (F ′

b) ∩ V (F ′
r) is exactly two, y′ �∈ V (F ′

b) ∩ V (F ′
r). Therefore for each vertex

x′ ∈ R′ \ V (F ′
b), there exists a vertex y′ ∈ B′ \ V (F ′

r) such that there exists a
T (x′, y′) trail, which is maximal with respect to y′.

As |B| < |R|, we have |B′ \ V (F ′
r)| ≤ |B \ R| < |R \ B| = |R′ \ V (F ′

b)| since
V (F ′

b)∩ (R′ \B′) = ∅. So there must be two distinct vertices x′, z′ ∈ R′ \V (F ′
b)

and a vertex y′ ∈ B′ \ V (F ′
r) such that two trails T (x′, y′) and T (z′, y′) exist.

Thus there exists a trail T (x′, z′) and hence a path between x′ and z′, which
is a contradiction. ✷
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We state a conjecture, which is known to be true for matchings ([8] p.88).

Conjecture 9 Let G be a graph, and B and R be subsets of V (G) such that
|B| < |R|. Then if there exists a maximum (1, f)-odd subgraph which avoids
B and one which avoids R, then there exists a maximum (1, f)-odd subgraph
which avoids B and at least one vertex of R \ B.

We conclude this paper by stating a property which matchings possess but
(1, f)-odd subgraphs do not.

Theorem 10 ([1] p.57) Let G be a graph and W a subset of V (G). Then G
has a matching which covers W if and only if

o(G − S | W ) ≤ |S| for all S ⊆ V (G), (2)

where o(G − S | W ) denotes the number of those odd components of G − S
whose vertices are contained in W .

Let G be the graph given in Figure 2, whose vertex set is {a, b, c, d, e, u, x, y, z}.
Define the function f by f(a) = f(b) = f(c) = f(d) = f(e) = f(u) = 1 and
f(x) = f(y) = f(z) = 3. Then for a subset W = {a, b, c, d, e, u}, G and W
satisfies o(G−S | W ) ≤ ∑

x∈S f(x) for all S ⊂ V (G), but G has no (1, f)-odd
subgraph which covers W . Hence (1, f)-odd subgraphs do not have exactly
the same property as the one given in Theorem 10 for matchings.

a b c d e

u

x y

z

Fig. 2. A graph G having no (1, f)-odd subgraph covering W
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