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Abstract

Let G be a graph and W a subset of V (G). Let g, f : V (G) → Z be two
integer-valued functions such that g(x) ≤ f(x) for all x ∈ V (G) and g(y) ≡ f(y)
(mod 2) for all y ∈ W . Then a spanning subgraph F of G is called a partial parity
(g, f)-factor with respect to W if g(x) ≤ degF (x) ≤ f(x) for all x ∈ V (G) and
degF (y) ≡ f(y) (mod 2) for all y ∈ W . We obtain a criterion for a graph G to
have a partial parity (g, f)-factor with respect to W . Furthermore, by making use
of this criterion, we give some necessary and sufficient conditions for a graph G to
have a subgraph which covers W and has a certain given property.

1 Partial parity (g, f)-factors

We consider a finite graph G which may have multiple edges and loops, and so a graph
means such a graph throughout this paper. Let V (G) and E(G) denote the set of vertices
and that of edges of G, respectively. For two disjoint subsets S and T of V (G), we write
eG(S, T ) for the number of edges of G joining S to T . For a vertex v of G, we denote
by degG(v) the degree of v in G, and by NG(v) the neighborhood of v. Let Z and Z+

denote the set of integers and that of non-negative integers, respectively. For a function
f : V (G) → Z+, a spanning subgraph F of G is called an f -factor if degF (x) = f(x) for
all x ∈ V (G). For two functions g, f : V (G) → Z such that g(x) ≤ f(x) for all x ∈ V (G),
a spanning subgraph H of G is called a (g, f)-factor if g(x) ≤ degH(x) ≤ f(x) for all
x ∈ V (G). Note that when we consider (g, f)-factors, we allow that g(x) < 0 and/or
degG(y) < f(y) for some vertices x and y of G, and this relaxation will play an important
technical role.
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For a given subset W of V (G), let g, f : V (G) → Z be two functions such that
g(x) ≤ f(x) for all x ∈ V (G) and g(y) ≡ f(y) (mod 2) for all y ∈ W . Then a spanning
subgraph F of G is called a partial parity (g, f)-factor with respect to W if

g(x) ≤ degF (x) ≤ f(x) for all x ∈ V (G) and

degF (y) ≡ g(y) ≡ f(y) (mod 2) for all y ∈ W.

Note that if W = ∅, then a partial parity (g, f)-factor is a (g, f)-factor and, if W = V (G),
then a partial parity (g, f)-factor is briefly called a parity (g, f)-factor. The criterions for
a graph to have an f -factor, a (g, f)-factor and a parity (g, f)-factor were obtained by
Tutte [9], Lovász [4] and [6], respectively. Moreover, Niessen [7] recently gave a criterion
for a graph G to have all (g, f)-factors, where we say that G has all (g, f)-factors if G has
an h-factor for every h : V (G) → Z+ such that g(x) ≤ h(x) ≤ f(x) for all x ∈ V (G) and∑

x∈V (G) h(x) ≡ 0 (mod 2), and if at least one such h exists.
We first give a necessary and sufficient condition for a graph to have a partial parity

(g, f)-factor.

Theorem 1 Let G be a graph and W a subset of V (G). Let g, f : V (G) → Z be two
functions satisfying

g(x) ≤ f(x) for all x ∈ V (G), and g(y) ≡ f(y) (mod 2) for all y ∈ W.

Then G has a partial parity (g, f)-factor with respect to W if and only if for all disjoint
subsets S and T of V (G),

ηG(S, T ) =
∑
x∈S

f(x) +
∑
x∈T

(degG(x)− g(x))− eG(S, T )− kW (S, T ) ≥ 0, (1)

where kW (S, T ) denotes the number of components D of G − (S ∪ T ) such that

g(x) = f(x) for all x ∈ V (D)\W and
∑

x∈V (D)

f(x)+eG(V (D), T ) ≡ 1 (mod 2). (2)

In order to prove Theorem 1, we need the following (g, f)-factor theorem.

Theorem 2 (Lovász [4]) Let G be a graph and g, f : V (G) → Z. Then G has a
(g, f)-factor if and only if for all disjoint subsets S and T of V (G),

δG(S, T ) =
∑
x∈S

f(x) +
∑
x∈T

(degG(x)− g(x))− eG(S, T )− hG(S, T ) ≥ 0, (3)

where hG(S, T ) denotes the number of components D of G−(S∪T ) such that g(x) = f(x)
for all x ∈ V (D) and

∑
x∈V (D)

f(x) + eG(V (D), T ) ≡ 1 (mod 2). (4)
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We call a component of G − (S ∪ T ) satisfying (4) a (g, f)-odd component.

Proof of Theorem 1 Let G′ be the graph obtained from G by adding (f(x)− g(x))/2
loops to each vertex x in W , and define a function g′ on V (G′) = V (G) by g′(x) = f(x)
for all x ∈ W and g′(x) = g(x) for all x ∈ V (G) \ W . Then it is easy to see that G has a
partial parity (g, f)-factor with respect to W if and only if G′ has a (g′, f)-factor.

By Theorem 2, G′ has a (g′, f)-factor if and only if

∑
x∈S

f(x) +
∑
x∈T

(degG′(x)− g′(x))− eG(S, T )− hG(S, T ) ≥ 0, (5)

for all disjoint subsets S and T of V (G). It follows that degG′(x)−g′(x) = degG(x)−g(x)
for all x ∈ V (G), and a component D of G′ − (S ∪ T ) is a (g′, f)-odd component if and
only if g′(x) = f(x) for all x ∈ V (D) and

∑
x∈V (D) f(x) + eG′(V (D), T ) ≡ 1 (mod 2).

However g′(x) = f(x) for all x ∈ V (D) if and only if g(x) = f(x) for all x ∈ V (D) \ W ,
and eG′(V (D), T ) = eG(V (D), T ). Hence D is a (g, f)-odd component of G′ − (S ∪ T ) if
and only if D is a component of G− (S ∪ T ) satisfying (2). Consequently the theorem is
proved. ✷

2 Subgraphs covering given vertex subsets

If a subgraph H of a graph G contains all the vertices of a given subset W of V (G), then
we briefly say that H covers W . On the other hand, if the vertex set of a subgraph K is
contained in W , then we briefly say that K is covered by W .

We define a cycle as a connected subgraph with all degree two. In particular, a loop
and two multiple edges joining the same two vertices are cycles. A matching is a subgraph
with all degree one. Let f : V (G) → {1, 3, 5, . . .}. Then a subgraph H of G is called a
(1, f)-odd subgraph if degH(x) ∈ {1, 3, 5, . . . , f(x)} for all x ∈ V (H), and a spanning
(1, f)-odd subgraph is called a (1, f)-odd factor. A component of odd order is called an
odd component, and the number of odd components of a graph G is denoted by o(G).

Lovász proved the following theorem, which is an extension of Tutte’s 1-factor theorem
[8].

Theorem 3 (Lovász [5]) Let G be a graph and W a subset of V (G). Then G has a
matching which covers W if and only if

o(G − S|W ) ≤ |S| for all S ⊆ V (G),

where o(G − S|W ) denotes the number of those odd components of G − S whose vertices
are all contained in W .

We first give an extension of the next theorem in Theorem 5.
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Figure 1: The tree T , where the numbers denote f(v).

Theorem 4 (Cui and Kano [1]) Let G be a graph and f : V (G) → {1, 3, 5, . . .}.
Then G has a (1, f)-odd factor if and only if

o(G − S) ≤ ∑
x∈S

f(x) for all S ⊆ V (G).

Before giving our extension, we remark that Theorem 4 cannot be directly generalized
as 1-factor theorem. Consider the tree T in Figure 1, in which the numbers denote the
values of f . Let W be the set of filled vertices. Then o(T − S|W ) ≤ ∑

x∈S f(x) holds for
all S ⊆ V (T ). However, T has no (1, f)-odd subgraph which covers W . Nevertheless, the
condition characterizes another property as the following theorem shows.

Theorem 5 Let G be a graph, W a subset of V (G), and f : V (G) → Z+ such that f(y)
is an odd integer for all y ∈ W . Then G has a subgraph H covering W such that

1 ≤ degH(x) ≤ f(x) for all x ∈ V (H), and degH(y) ≡ 1 (mod 2) for all y ∈ W

if and only if
o(G − S|W ) ≤ ∑

x∈S

f(x) for all S ⊆ V (G), (6)

where o(G − S|W ) denotes the number of those odd components of G − S whose vertices
are all contained in W .

Proof We first prove the necessity. Suppose that G has a subgraph H given in the
theorem. Then for every odd component D of G − S covered by W , at least one edge of
H joins D to S. Thus we obtain

o(G − S|W ) ≤ ∑
x∈S

degH(x) ≤ ∑
x∈S

f(x).

We next prove the sufficiency. Let N be an odd integer greater than
∑

x∈V (G) degG(x),
which is a sufficiently large integer. Define a function g : V (G) → Z by g(x) = −N
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for all x ∈ V (G). Then a partial parity (g, f)-factor with respect to W is the desired
subgraph of the theorem. So it suffices to show that G, g and f satisfy the condition (1)
in Theorem 1.

Let S and T be two disjoint subsets of V (G). If T �= ∅, then ηG(S, T ) ≥ 0 as
degG(x) − g(x) = degG(x) + N for every x ∈ T . Thus we may assume that T = ∅. It
is immediate that a component D of G − S satisfying (2) is covered by W and has odd
order. Therefore, it follows from (6) that

ηG(S, ∅) =
∑
x∈S

f(x)− kW (S, ∅) = ∑
x∈S

f(x)− o(G − S|W ) ≥ 0.

Consequently the theorem is proved. ✷

Theorem 6 Let G be a graph and W ⊆ V (G) with |W | even. Then G has a set of
vertex disjoint paths such that W is the set of their end-vertices if and only if

oW (G − S) ≤ |S ∩ W |+ 2|S \ W | for all S ⊆ V (G), (7)

where oW (G − S) denotes the number of components D of G − S such that |V (D) ∩ W |
is odd.

Proof Let H be a subgraph of G that satisfies

degH(x) = 1 for all x ∈ W, and degH(y) = 2 for all y ∈ V (H) \ W. (8)

Then it is obvious that a subgraph H with minimal vertex set satisfying (8) consists of
vertex disjoint paths whose end-vertices coincide with W . Thus G has the desired set of
paths if and only if G has a subgraph H satisfying (8).

Suppose that G has such a subgraph H . For each component D of G − S such that
|V (D) ∩ W | is odd, at least one edge of H joins D to S. Thus we obtain

oW (G − S) ≤ ∑
x∈S

degH(x) = |S ∩ W |+ 2|S \ W |.

We now prove the sufficiency. We use Theorem 1 with W = V (G), that is, we apply
the parity (g, f)-factor theorem to the graph G given in the theorem.

Let N be a sufficiently large integer, and define two functions g, f : V (G) → Z by

g(x) =
{−2N − 1 if x ∈ W ,
−2N otherwise;

and f(x) =
{
1 if x ∈ W ,
2 otherwise.

Then if G has a parity (g, f)-factor F , which may have degree 0 for some vertices of
V (G) \W but must have degree 1 for every vertex of W , then the subgraph of G induced
by the edge set E(F ) is the desired subgraph H . Hence it suffices to show that G, g and
f satisfies (1).

By the assumption that oW (G) = 0, any component of G contains even number of
vertices in W . Thus it follows that ηG(∅, ∅) = −kV (G)(∅, ∅) = 0. Let S and T be disjoint
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subsets of V (G) such that S ∪ T �= ∅. If T �= ∅, then since −g(x) ≥ 2N is sufficiently
large, we have

ηG(S, T ) =
∑
x∈S

f(x) +
∑
x∈T

(degG(x)− g(x))− eG(S, T )− kV (G)(S, T ) ≥ 0.

Hence we may assume that T = ∅. Then we obtain

ηG(S, ∅) = ∑
x∈S

f(x)− kV (G)(S, ∅) = 2|S \ W |+ |S ∩ W | − oW (G − S) ≥ 0,

as desired. ✷

Theorem 7 Let G be a graph, W a set of vertices of G. Then G has a set of vertex
disjoint cycles that cover W if and only if for all disjoint subsets S ⊆ V (G) and T ⊆ W ,
it follows that

2|S|+ ∑
x∈T

(degG(x)− 2)− eG(S, T )− k∗(S, T ) ≥ 0, (9)

where k∗(S, T ) denotes the number of component D of G− (S ∪ T ) such that V (D) ⊆ W
and eG(T, V (D)) ≡ 1 (mod 2).

Proof Let N be a sufficiently large number, and define two functions g, f : V (G) → Z
by

g(x) =
{
2 if x ∈ W ,
−2N otherwise;

and f(x) = 2 for all x ∈ V (G).

Then G has a parity (g, f)-factor, which may have degree 0 for some vertices of V (G)\W ,
if and only if G has the desired set of disjoint cycles. Thus it suffices to show that (1)
and (9) are equivalent.

Suppose that (1) holds. Let S ⊆ V (G) and T ⊆ W . Then by (1), we have

ηG(S, T ) = 2|S|+ ∑
x∈T

(degG(x)− 2)− eG(S, T )− kV (G)(S, T ) ≥ 0.

Moreover, every component D of G− (S ∪ T ) satisfying (2) is covered by W since g(x) <
f(x) for all x ∈ V (G) \ W , and satisfies eG(T, V (D)) ≡ 1 (mod 2). Thus kV (G)(S, T ) =
k∗(S, T ), and hence (9) holds.

Conversely, assume that (9) holds. It follows that ηG(∅, ∅) = −kV (G)(∅, ∅) = 0 since
f(x) = 2 for all x ∈ V (G). Let S and T be disjoint subsets of V (G) such that S ∪ T �= ∅.
If T \ W �= ∅, then since −g(x) = 2N is sufficiently large for x ∈ T \ W , we have
ηG(S, T ) ≥ 0. Thus we may assume that T ⊆ W . It follows that kV (G)(S, T ) = k∗(S, T )
as we showed above. Hence by (9), we obtain

ηG(S, T ) = 2|S|+ ∑
x∈T

(degG(x)− 2)− eG(S, T )− kV (G)(S, T ) ≥ 0.

Therefore (1) holds. Consequently, the theorem is proved. ✷
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Theorem 8 Let G be a graph and W a set of vertices of G. Then G has a set of vertex
disjoint cycles and paths such that it covers W and only the end-vertices of the paths are
contained in V (G) \ W if and only if for all disjoint subsets S ⊆ V (G) and T ⊆ W , it
follows that

|S \ W |+ 2|S ∩ W |+ ∑
x∈T

(degG(x)− 2)− eG(S, T )− k∗(S, T ) ≥ 0, (10)

where k∗(S, T ) denotes the number of component D of G− (S ∪ T ) such that V (D) ⊆ W
and eG(T, V (D)) ≡ 1 (mod 2).

Proof Let N be a sufficiently large integer, and define two functions g, f : V (G) → Z
by

g(x) =
{
2 if x ∈ W ,
−N otherwise;

and f(x) =
{
2 if x ∈ W ,
1 otherwise.

Then G has a (g, f)-factor, which may have degree 0 for some vertices of V (G) \ W , if
and only if G has the desired set of cycles and paths. Hence it suffices to show that (10)
and (3) are equivalent. It follows that δG(∅, ∅) = −hG(∅, ∅) = 0 since g(x) < f(x) for all
x ∈ V (G) \ W and f(y) = 2 for all y ∈ W . Let S and T be disjoint subsets of V (G)
such that S ∪ T �= ∅. If T \ W �= ∅, then δG(S, T ) ≥ 0 since −g(x) = N is sufficiently
large for x ∈ T \ W . Thus we may assume that T ⊆ W . It follows immediately that
hG(S, T ) = k∗(S, T ) and

δG(S, T ) = |S \ W |+ 2|S ∩ W |+ ∑
x∈T

(degG(x)− 2)− eG(S, T )− hG(S, T ).

Hence (10) and (3) are equivalent. Therefore the theorem is proved. ✷

Theorem 9 Let G be a graph and W a set of vertices of G. Then G has a subgraph H
such that

degH(x) ∈ {2, 4, 6, . . .} for all x ∈ W, and degH(y) = 1 for all y ∈ V (G) \ W (11)

if and only if for all disjoint subsets S ⊆ V (G) \ W and T ⊆ W , it follows that

|S|+ ∑
x∈T

(degG(x)− 2)− eG(S, T )− k∗(S, T ) ≥ 0, (12)

where k∗(S, T ) denotes the number of component D of G− (S ∪ T ) such that V (D) ⊆ W
and eG(T, V (D)) ≡ 1 (mod 2).

Proof Let N be a sufficiently large integer, and define two functions g, f : V (G) → Z
by

g(x) =
{
2 if x ∈ W ,
−N otherwise;

and f(x) =
{
2N if x ∈ W ,
1 otherwise.

Then G has a partial parity (g, f)-factor with respect to W , which may have degree 0 for
some vertices of V (G) \W , if and only if G has the desired subgraph H . Hence it suffices
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to show that (12) and (1) are equivalent. This can be done by a similar argument as in
the previous proofs. ✷

For two integers a and b, a subgraph H of a graph G is called an [a, b]-subgraph if
a ≤ degH(x) ≤ b for all x ∈ V (H). A spanning [a, b]-subgraph is called an [a, b]-factor.
The following theorem is an extension of the result by Las Vergnas [3].

Theorem 10 Let G be a graph and W a subset of V (G) and n ≥ 2 an integer. Then
G has a [1, n]-subgraph covering W if and only if

i(G − S|W ) ≤ n|S| for all S ⊆ V (G), (13)

where i(G − S|W ) denotes the number of isolated vertices of G − S contained in W .

Proof Suppose that G has a [1, n]-subgraph H which covers W . Then for every isolated
vertex x of G − S contained in W , H has at least one edge which joins x to S. Hence

i(G − S|W ) ≤ ∑
x∈S

degH(x) ≤ n|S|.

We next prove the sufficiency. Let N be a sufficiently large integer. We define two
functions f and g as follows:

g(x) =
{
1 if x ∈ W ,
−N otherwise;

and f(x) = n for all x ∈ V (G).

Then a (g, f)-factor of G is the desired subgraph. So it suffices to show that G satisfies
the condition (3).

Let S and T be two disjoint subsets of V (G). If T \ W �= ∅, then δG(S, T ) ≥ 0 since
−g(x) = N for every x ∈ T \W . Thus we may assume that T ⊆ W . Note that h(S, T ) = 0
since g(x) < f(x) for all x ∈ V (G). By (13), we obtain

δG(S, T ) = n|S|+ ∑
x∈T

(degG(x)− 1)− eG(S, T )

= n|S|+ ∑
x∈T

(degG−S(x)− 1)

≥ n|S| − i(G − S|W ) ≥ 0.

Therefore the theorem is proved. ✷
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