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Abstract

Let G be a graph and W a subset of V(G). Let g,f : V(G) — Z be two
integer-valued functions such that g(z) < f(z) for all x € V(G) and ¢(y) = f(y)
(mod 2) for all y € W. Then a spanning subgraph F' of G is called a partial parity
(g, f)-factor with respect to W if g(x) < degp(z) < f(x) for all z € V(G) and
degr(y) = f(y) (mod 2) for all y € W. We obtain a criterion for a graph G to
have a partial parity (g, f)-factor with respect to W. Furthermore, by making use
of this criterion, we give some necessary and sufficient conditions for a graph G to
have a subgraph which covers W and has a certain given property.

1 Partial parity (g, f)-factors

We consider a finite graph G' which may have multiple edges and loops, and so a graph
means such a graph throughout this paper. Let V(G) and E(G) denote the set of vertices
and that of edges of G, respectively. For two disjoint subsets S and T of V(G), we write
eq(S,T) for the number of edges of G joining S to T. For a vertex v of GG, we denote
by degs(v) the degree of v in G, and by Ng(v) the neighborhood of v. Let Z and Z*
denote the set of integers and that of non-negative integers, respectively. For a function
f:V(G) — Z*, a spanning subgraph F of G is called an f-factor if degp(x) = f(z) for
all z € V(G). For two functions g, f: V(G) — Z such that g(z) < f(z) for all z € V(G),
a spanning subgraph H of G is called a (g, f)-factor if g(z) < degy(x) < f(x) for all
x € V(G). Note that when we consider (g, f)-factors, we allow that g(x) < 0 and/or
degn(y) < f(y) for some vertices x and y of G, and this relaxation will play an important
technical role.
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For a given subset W of V(G), let g, f : V(G) — Z be two functions such that
g(x) < f(z) for all x € V(G) and ¢g(y) = f(y) (mod 2) for all y € W. Then a spanning
subgraph F' of G is called a partial parity (g, f)-factor with respect to W' if

g(x) < degp(z) < f(x) forall z € V(G) and
degp(y) = g(y) = f(y) (mod 2) forall yeW.

Note that if W = (), then a partial parity (g, f)-factor is a (g, f)-factor and, if W = V(G),
then a partial parity (g, f)-factor is briefly called a parity (g, f)-factor. The criterions for
a graph to have an f-factor, a (g, f)-factor and a parity (g, f)-factor were obtained by
Tutte [9], Lovasz [4] and [6], respectively. Moreover, Niessen [7] recently gave a criterion
for a graph G to have all (g, f)-factors, where we say that G has all (g, f)-factors if G has
an h-factor for every h : V(G) — Z7 such that g(z) < h(z) < f(x) for all x € V(G) and
Yrevieyh(z) =0 (mod 2), and if at least one such h exists.

We first give a necessary and sufficient condition for a graph to have a partial parity
(g, f)-factor.

Theorem 1 Let G be a graph and W a subset of V(G). Let g, f:V(G) — Z be two
functions satisfying

g(x) < f(z) forall x € V(G), and g(y)= f(y) (mod2) forall ye W.

Then G has a partial parity (g, f)-factor with respect to W if and only if for all disjoint
subsets S and T of V(G),

=2 f(2) + > _(degs(x) — g(7)) — ec(S,T) = kw(S,T) = 0, (1)

zeSs zeT

where ky (S, T) denotes the number of components D of G — (S UT) such that

g(z) = f(z) forall z € V(ID)\W and > f(z)+ec(V(D), T)=1 (mod 2). (2)
zeV (D)

In order to prove Theorem 1, we need the following (g, f)-factor theorem.

Theorem 2 (Lovasz [4]) Let G be a graph and g,f : V(G) — Z. Then G has a
(g, f)-factor if and only if for all disjoint subsets S and T of V(G),

T)=>_ f(z)+ ) (degs(z) — g(2)) — ea(S,T) — ha(S,T) = 0, (3)

zeSs zeT

where hg(S,T) denotes the number of components D of G—(SUT') such that g(x) = f(z)
for all z € V(D) and

S f@)+eq(V(D),T)=1 (mod 2). (4)

zeV (D)



We call a component of G — (S UT) satisfying (4) a (g, f)-odd component.

Proof of Theorem 1 Let G’ be the graph obtained from G by adding (f(z) — g(x))/2
loops to each vertex z in W, and define a function ¢’ on V(G') = V(G) by ¢'(z) = f(z)
for all z € W and ¢'(x) = g(z) for all z € V(G) \ W. Then it is easy to see that G has a
partial parity (g, f)-factor with respect to W if and only if G’ has a (¢', f)-factor.

By Theorem 2, G’ has a (¢, f)-factor if and only if

> f@)+ > (dege(r) — ¢'(2) — ea(S, T) = ha(S,T) 2 0, (5)

€S z€T

for all disjoint subsets S and T" of V(G). It follows that deg () — ¢'(x) = degs(z) — g(x)
for all € V(G), and a component D of G' — (SUT) is a (¢', f)-odd component if and
only if ¢'(x) = f(z) for all z € V(D) and ¥ ,cy(p) f(z) + ea(V(D),T) =1 (mod 2).
However ¢'(z) = f(z) for all x € V(D) if and only if g(z) = f(z) for all x € V(D) \ W,
and e (V (D), T) = eq(V(D),T). Hence D is a (g, f)-odd component of G' — (SUT) if
and only if D is a component of G — (S UT) satisfying (2). Consequently the theorem is
proved. O

2 Subgraphs covering given vertex subsets

If a subgraph H of a graph G contains all the vertices of a given subset W of V(G), then
we briefly say that H covers W. On the other hand, if the vertex set of a subgraph K is
contained in W, then we briefly say that K is covered by W.

We define a cycle as a connected subgraph with all degree two. In particular, a loop
and two multiple edges joining the same two vertices are cycles. A matching is a subgraph
with all degree one. Let f : V(G) — {1,3,5,...}. Then a subgraph H of G is called a
(1, f)-odd subgraph if degy(z) € {1,3,5,..., f(z)} for all x € V(H), and a spanning
(1, f)-odd subgraph is called a (1, f)-odd factor. A component of odd order is called an
odd component, and the number of odd components of a graph G is denoted by o(G).

Lovasz proved the following theorem, which is an extension of Tutte’s 1-factor theorem

18].

Theorem 3 (Lovasz [5]) Let G be a graph and W a subset of V(G). Then G has a
matching which covers W if and only if

o(G—=S|W)<|S| forall SCV(G),

where o(G — S|W') denotes the number of those odd components of G — S whose vertices
are all contained in W.

We first give an extension of the next theorem in Theorem 5.



Figure 1: The tree T', where the numbers denote f(v).

Theorem 4 (Cui and Kano [1]) Let G be a graph and f : V(G) — {1,3,5,...}.
Then G has a (1, f)-odd factor if and only if

o(G—=S5)<> f(z) forall SCV(Q).

zesS

Before giving our extension, we remark that Theorem 4 cannot be directly generalized
as 1-factor theorem. Consider the tree 7" in Figure 1, in which the numbers denote the
values of f. Let W be the set of filled vertices. Then o(T — S|W) < > ,cq f() holds for
all S C V(T'). However, T has no (1, f)-odd subgraph which covers W. Nevertheless, the
condition characterizes another property as the following theorem shows.

Theorem 5 Let G be a graph, W a subset of V(G), and f : V(G) — Z* such that f(y)
s an odd integer for ally € W. Then G has a subgraph H covering W such that

1 <degy(x) < f(z) forall € V(H), and degy(y)=1 (mod?2) forall yeW

iof and only of
o(G—=SW) <> f(x) forall S CV(G), (6)
z€S

where o(G' — S|W) denotes the number of those odd components of G — S whose vertices
are all contained in W.

Proof We first prove the necessity. Suppose that G has a subgraph H given in the
theorem. Then for every odd component D of G — S covered by W, at least one edge of
H joins D to S. Thus we obtain

o(G = SIW) £ Y degy () < 3 f(@).

z€eS €S

We next prove the sufficiency. Let N be an odd integer greater than 3=, cy () degg(z),
which is a sufficiently large integer. Define a function g : V(G) — Z by g(z) = —N
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for all z € V(G). Then a partial parity (g, f)-factor with respect to W is the desired
subgraph of the theorem. So it suffices to show that GG, g and f satisfy the condition (1)
in Theorem 1.

Let S and T be two disjoint subsets of V(G). If T # (), then ng(S,T) > 0 as
degs(z) — g(x) = degg(x) + N for every x € T. Thus we may assume that T = (). It
is immediate that a component D of G — S satisfying (2) is covered by W and has odd
order. Therefore, it follows from (6) that

na(S,0) = 3 flx) —kw(S,0) =Y f(z) — o(G — S|W) > 0.

zeS zeS

Consequently the theorem is proved. O

Theorem 6 Let G be a graph and W C V(G) with |W| even. Then G has a set of
vertex disjoint paths such that W is the set of their end-vertices if and only if

ow(G—=8) <|SNW|+2[S\W| forall SCV(G), (7)

where oy (G — S) denotes the number of components D of G — S such that |V (D) N W|
is odd.

Proof Let H be a subgraph of GG that satisfies
degy(z) =1 forall x € W, and degy(y) =2 forall y e V(H)\W. (8)

Then it is obvious that a subgraph H with minimal vertex set satisfying (8) consists of
vertex disjoint paths whose end-vertices coincide with W. Thus G has the desired set of
paths if and only if G has a subgraph H satisfying (8).

Suppose that G has such a subgraph H. For each component D of G — S such that
V(D) N W|is odd, at least one edge of H joins D to S. Thus we obtain

w(G = 8) <> degy(x) = [SNW[+2[S\W].

z€eS

We now prove the sufficiency. We use Theorem 1 with W = V(G), that is, we apply
the parity (g, f)-factor theorem to the graph G given in the theorem.
Let N be a sufficiently large integer, and define two functions g, f : V(G) — Z by

(x)—{_2N_1 ifreW, and f(x)—{l ifeeW,
| —2N otherwise; 12 otherwise.

Then if G has a parity (g, f)-factor F', which may have degree 0 for some vertices of
V(G)\ W but must have degree 1 for every vertex of W, then the subgraph of G induced
by the edge set E(F') is the desired subgraph H. Hence it suffices to show that G, g and
f satisfies (1).

By the assumption that oy (G) = 0, any component of G contains even number of
vertices in W. Thus it follows that n(0,0) = —ky(e)(0,0) = 0. Let S and T be disjoint

ot



subsets of V(@) such that SUT # (. If T # 0, then since —g(z) > 2N is sufficiently
large, we have

n6(S,T) = > f(z) + > _(degg(z) — g(2)) — ec(S,T) — kv (S, T) = 0.

zeS zeT

Hence we may assume that 7' = (). Then we obtain

na(S,0) = f(x) = kv (S,0) = 2[S\ W[+ [SN W[ - ow (G = 5) >0,

zeS

as desired. O

Theorem 7 Let G be a graph, W a set of vertices of G. Then G has a set of vertex
disjoint cycles that cover W if and only if for all disjoint subsets S C V(G) and T C W,
it follows that
21S| + ¥ (deg(x) — 2) — e (S.T) — K*(S.T) > 0, )
zeT
where k*(S,T) denotes the number of component D of G — (S UT) such that V(D) C W
and eq(T, V(D)) =1 (mod 2).

Proof Let N be a sufficiently large number, and define two functions g, f : V(G) — Z
by

(z) = { 2 ifx e W,

W)= —aN otherwise;

Then G has a parity (g, f)-factor, which may have degree 0 for some vertices of V(G)\ W,

if and only if G has the desired set of disjoint cycles. Thus it suffices to show that (1)

and (9) are equivalent.
Suppose that (1) holds. Let S C V(G) and T'C W. Then by (1), we have

and f(z) =2 forall z € V(G).

ne(S,T) =2|S|+ > (degg(z) — 2) — eq(S,T) — kv (S,T) > 0.

zeT

Moreover, every component D of G — (SUT) satisfying (2) is covered by W since g(x) <
f(x) for all x € V(G) \ W, and satisfies eq(7,V (D)) =1 (mod 2). Thus ky()(S,T) =
k*(S,T), and hence (9) holds.

Conversely, assume that (9) holds. It follows that ng(0,0) = —ky ) (0,0) = 0 since
f(z) =2for all x € V(G). Let S and T be disjoint subsets of V(G) such that SUT # (.
If T\ W # (), then since —g(x) = 2N is sufficiently large for z € T\ W, we have
na(S,T) > 0. Thus we may assume that 77 C W. It follows that ky ) (S, T) = k*(S,T)
as we showed above. Hence by (9), we obtain

ne(S,T) =2|S|+ > (degg(z) — 2) — eq(S,T) — ky)(S,T) > 0.

zeT

Therefore (1) holds. Consequently, the theorem is proved. O



Theorem 8 Let G be a graph and W a set of vertices of G. Then G has a set of vertex
disjoint cycles and paths such that it covers W and only the end-vertices of the paths are
contained in V(G) \ W if and only if for all disjoint subsets S C V(G) and T C W, it
follows that

IS\ W|+2[SNW|+ Y (degg(x) — 2) — ea(S,T) — k*(S,T) > 0, (10)

zeT

where k*(S,T) denotes the number of component D of G — (S UT) such that V(D) C W
and eq(T, V(D)) =1 (mod 2).

Proof Let N be a sufficiently large integer, and define two functions g, f : V(G) — Z

by
_[2 ifzeW, (2 ifrxeW,
9(x) = { —N  otherwise; and  f(z) = { 1 otherwise.

Then G has a (g, f)-factor, which may have degree 0 for some vertices of V(G) \ W, if
and only if G has the desired set of cycles and paths. Hence it suffices to show that (10)
and (3) are equivalent. It follows that d¢(0,0) = —hg(0,0) = 0 since g(z) < f(z) for all
r € V(G)\ W and f(y) = 2 for all y € W. Let S and T be disjoint subsets of V(G)
such that SUT # 0. If T\ W # 0, then 0¢(S,T) > 0 since —g(x) = N is sufficiently
large for z € T\ W. Thus we may assume that T C W. It follows immediately that
ha(S,T) = k*(S,T) and

6c(S,T) =[S\ W|+2[SNW|+ > (degg(z) —2) — eq(S,T) — ha(S,T).

zeT

Hence (10) and (3) are equivalent. Therefore the theorem is proved. O

Theorem 9 Let G be a graph and W a set of vertices of G. Then G has a subgraph H
such that

degy(x) € {2,4,6,...} forall x €W, and degy(y)=1 forall ye V(G)\W (11)
if and only if for all disjoint subsets S C V(G)\ W and T C W, it follows that
S|+ > (degg(x) —2) —eq(S,T) — k*(S,T) >0, (12)
zeT
where k*(S,T) denotes the number of component D of G — (S UT) such that V(D) C W
and eq(T, V(D)) =1 (mod 2).

Proof Let N be a sufficiently large integer, and define two functions g, f : V(G) — Z
by

2 if x e W,
—N otherwise;

2N ifxeW,
1 otherwise.

o(x) = { and  f() = {

Then G has a partial parity (g, f)-factor with respect to W, which may have degree 0 for
some vertices of V(G) \ W, if and only if G has the desired subgraph H. Hence it suffices
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to show that (12) and (1) are equivalent. This can be done by a similar argument as in
the previous proofs. O

For two integers a and b, a subgraph H of a graph G is called an [a, b]-subgraph if
a < degy(z) < bforall z € V(H). A spanning [a, b]-subgraph is called an [a, b]-factor.
The following theorem is an extension of the result by Las Vergnas [3].

Theorem 10  Let G be a graph and W a subset of V(G) and n > 2 an integer. Then
G has a [1,n]-subgraph covering W if and only if

i(G—S|W) <n|S| forall SCV(G), (13)
where (G — S|W) denotes the number of isolated vertices of G — S contained in W.

Proof Suppose that G has a [1, n]-subgraph H which covers W. Then for every isolated
vertex x of G — S contained in W, H has at least one edge which joins x to S. Hence

(G~ S|W) < Y degy(2) < nlS|.

zeSs

We next prove the sufficiency. Let N be a sufficiently large integer. We define two
functions f and ¢ as follows:

1 ifxeW,

_N otherwise: and f(x)=n forall z € V(G).

o) = {
Then a (g, f)-factor of G is the desired subgraph. So it suffices to show that G satisfies
the condition (3).
Let S and T be two disjoint subsets of V(G). If T\ W # (), then (S, T) > 0 since
—g(z) = N for every x € T\W. Thus we may assume that 7 C WW. Note that h(S,T) =0
since g(x) < f(z) for all z € V(G). By (13), we obtain

6G(S7T) = ’fL|S| + Z(degG(‘r) - 1) - eG(S7T)

zeT

= n|S|+ > _(degg_g(x) — 1)

> nlS|—i(G— S|W) > 0.

Therefore the theorem is proved. O
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