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Abstract
A spanning subgraph F of a graph G is called a [k — 1, k]-factor if k — 1 < dp(z) < k
for all vertices x of G, where dp(x) denotes the degree of z in F. Tutte proved that if
r is an odd integer, then every r-regular graph has a [k — 1, k]-factor for every integer
k, 0 < k <r. We prove that if r is odd and 0 < k < 23—’", then every r-regular graph
has a [k — 1, k]-factor each of whose components is regular.

1 Introduction

We consider a finite graph G' which may have multiple edges but has no loops. A graph
without multiple edges is called a simple graph. We denote by V(G) and E(G) the set of
vertices and the set of edges of G, respectively. We write dg(x) for the degree of a vertex
x in G. Let a, b and r be integers such that 0 < a < b and r > 0. A spanning subgraph
F of G is called an [a, b]-factor of G if a < dp(x) < b for all z € V(G), and we usually call
an [r, r|-factor an r-factor. An r-regular graph is a graph in which each vertex has degree r.
Other notation and definitions not defined in this paper can be found in [3 or 4].

Tutte [12]([4,p77]) proved that for any odd integer r and any integer k£ (0 < k < r),
every r-regular graph has a [k — 1, k]-factor. It was proved in [6,11] that every regular graph
has a [1,2]-factor each of whose components is regular. Enomoto and Saito [5] gave the
following conjecture: Every r-regular graph has a [k — 1, k]-factor each of whose components
is regular for any k, 0 < k£ < r. Note that this conjecture is true when r is even by Petersen’s
2-factorable theorem (see Lemma ?7?). So the essential part of the conjecture is the case that
r is odd. Main results of this paper are the following two theorems, and a theorem on
[a, b]-factors is given in Section 3.

Theorem 1. Let r and k be positive integers. If k < 2(2r+1)/3, then every (2r +1)-reqular
graph has a [k — 1, k]-factor each of whose components is reqular.
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Theorem 2. Let k and r be positive integers. If 2r + 2 — \/2r +2 < k < 2r, then there
exists a simple (2r + 1)-regular graph that has no [k — 1, k]-factor each of whose components
15 reqular.

2 Proofs of Theorem 1 and 2

Let G be a graph, and ¢g and f be integer-valued functions defined on V(G) such that
g(xz) < f(x) for all x € V(G). A spanning subgraph F' of G is called a (g, f)- factor if
g(x) < dp(z) < f(z) for all z € V(G). A (g, f)-factor satisfying g(z) = f(x) for all
x € V(G) is briefly called an f-factor. For a vertex subset X of G, we write G — X for the
subgraph of G obtained from G by deleting the vertices in X together with their incident
edges.
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