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ABSTRACT. Our purpose is to propose a new viewpoint
for graph factors, apart from the traditional degree
conditions. A spanning subgraph F is called a path-
factor if each component of F is a path of order at
least two. In particular, a path-factor F is called a
(PZ,P3)—factor if each component of F is either P, oOr
P3. n
such that every component of F is a path P_ of order n.
r c

n
esults on (P,,P,)-factors, P, ,-factors and P, -

T2 30 TR 3 T4
factors and their applications for the "triominos

A P -factor F, for some fixed n > 2, is a factor

Several

tiling problem" are presented and also some graph decom-
position problems related to these factors are dis-

cussed.
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1. INTRODUCTION

We deal with only finite, simple graphs, which have
neither multiple edges nor loops. All notation and
definitions not given here can be found in Harary [13].
Let Gl’
has a (Gl'GZ"'
and each component of H is isomorphic to one of the

G2""’Gn be nontrival graphs. A graph G
.,Gn)~subgraph H if H is a subgraph of G

Gi (i =1,2,...,n). 1In particular, such a spanning sub-
graph of G is called a (Gl,Gz,...,Gn)-factor of G.
A factor F is called a path-factor (or a cycle-

factor) if every component of F is a path (or a cvcle).
From this point of view, ordinary l-factors (or 2-fac-
tors) are just the same as P2-factors (or cycle-factors).
Those factors defined in this manner are called compo-

nent factors of a graph. Several component-factors

concerning path or cycle are listed in the followings.

A List of Component-Factors related to Paths, Cycles or

Stars

1. P2-factor; l-factor, see Tutte [1l6].

2. P3—factor

3. In general, Pi-factor for some fixed i > 2.

4. (P2,P3)—factor; (1,2)-factor, see Akiyama, Avis and

Era [3] or Akiyama [1,2].

5. (P,,C |n 2 3)-factor, see Tutte [17], Hajnal [12]
and Berge [9, Theorem 3.1].

6. (PyrCon+1
blank [101].
(P2,C3)—factor

In > 1)-factor, see Cornuejols and Pully-

cycle-factor; 2-factor, see Belck [7].

star-factor, see Amahashi and Kano [6].
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2. (P2,P )-FACTORS

3
A spanning subgraph F of G is called a (1,2)-factor if
each vertex of F has degree 1 or 2 in F. A criterion
for a graph to have a (1,2)-factor was discovered by
Akiyama, Avis and Era [3]. The following three state-
ments are equivalent.

(a) G has a (1,2)-factor

(b) G has a path-factor

(c) G has a (P2,P3)-factor

Hence, the criterion for (a) is the same as for (b)

or (c):

Theorem A. A graph G has a (P,,P,)-factor if and only
if o
i(G-8) < 2|s]
for every subset S < V(G), where i(G-S) denotes the
number of isolated vertices of G- S.
This theorem has some interesting corollaries as

follows.

Corollary Al. Let G be a graph with maximum degree A
and minimum degree 6. If A/S§ < 2, then G has a (P2,P3)—

factor.

Proof. Let S be a subset of V(G). Then the inequality
i(G - 8)+ 6<4+|s| holds, and thus i(G-S) < 2|S| since
A/S <2000

The next corollary follows at once from the pre-

vious result since A = § for regular graphs.
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Corollary A2. Every regular graph has a (P2,P3)-

factor. 0

Every maximal planar graph has a (PZ,P3)-factor
although its ratio A/§ may become large.

Corollary A3. Every maximal planar graph has a (P2,P3)-

factor.

Proof. Let G be a maximal planar graph, S be any ver-
tex subset of G, and I(G- S) be the set of isolated ver-
tices of G- S. Then the neighborhood N(G- S) of I(G- S)
is contained in S and the subgraph H induced by N(G- S)
of G forms a planar graph without end vertices, since
G is maximal planar.

For any component C of H, we denote by r(C) the
number of regions,of C. Then applying the Euler Poly-

hedron Formula, we obtain
r(C) < 2|lv(c)| - 4 < 2]v(c)].
Hence we have the following inequalities:

i(G-8) = |1(G-8)| < ] r(c)
" CcH

<) 2lv©] g 2lve]| ¢ 2]s].
C
Consequently, G has a (P2,P3)—factor by Theorem A. [

We introduce a family of graphs called triangle
graphs. Let 1 be a plane with rectangular coordinates

and L be a set of lines on m given by:
L={y=n or y=1/3 x+2n In € z}.

An infinite graph I is obtained by taking the set of
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lattice points of m as the vertex set V(I) and the set
of unit segments of 1 as the edge set E(I).

A triangle graph is a subgraph of I obtained from

a set of unit triangles on n~, see Figure 1.

Figure 1. A triangle graph T and its (P2,P3)—factor

Corollary A5. Every triangle graph T has a (P,,P,)-

factor.

Proof. Let S be a vertex subset of T. It is easy to
see that for every vertex x ¢S, the number of edges
joining x and the isolated vertices of G- S does not

exceed 4. Hence we have the following inequalities.

2i (G-8) < 4[s]. 1

3. P4-FACTORS

We present the following theorem which is analogous to
the theorem of Petersen which shows the existence of a
P.- factor for cubic bridgeless graphs.

2
The next lemma is required to provem Theorem 3.1.

Lemma B. (Berge [8, Theorems 6 and 7 in Chapter 18]

and Plesnik [14]). Let G be an r-regqular, (r-1)-edge

5
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connected multigraph of even order. Then there exists

a P2—factor containing an arbitrarily given edge e.l[l

Theorem 3.1. Let G be a 3-edge connected, cubic graph
of order 4p. Then for any two edges e and €y there

exists a P,-factor containing both of them.

4

Proof. A 3-edge connected, cubic graph G has a P2—

factor Fl containing e, by Lemma B. Denote by G* the

1
graph obtained from G by contracting every edge of Fl’

(See Figure 2.)

HHH : a P,-factor F, HH : a P,-factor F,

Figure 2.

Then G* is a 4-regular, 3-edge connected multigranh.
Applying Lemma B, G* has a P,-factor F,, which contains

e, if F, does not contain el.

2 1
Then Fl U Fé constitutes a Pa—factor of G and it
contains both e and e,- 0

Corollary 3.2. Every 3-connected cubic gravh of order

2
ha P4—factor=

4p
-

n
A1)

The graph illustrated in Figure 3 shows that the
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Figure 3. A 2-edge connected cubic gravh of order 60

having no P4-factor

connectivity hypothesis of Theorem 3.2 cannot be omitted

4, P3-FACTORS
We first discuss an easy necessary condition for a graoh
to have a P3-factor.

Suppose G has a P3-factor. Then for any vertex
subset S of G, the components of G -S can be classified
into three types Ti (i=0,1,2) according as their order i
(mod 3). Denote by wi(G-S) the number of components of
the type Ti’ then we have the inequality (4.1) by esti-
mating the least number of vertices of S needed to form

a P3-factor of G.

wy (G -8) + 20,(G-8) < 2|s]| (4.1)

However the condition (4.1) is not sufficient for
a graph to have a P3-factor, which can be seen in

Figure 4(a).

We here propose a con

a ~ +a —ea = e d D Wil N =

jecture on the existence of a

D
P3-factor for cubic graphs.
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(a) A graph without P,- (b) A 2-connected cubic
factors, which graph of order 54 with
satisfies (4.1) no P3-factors

Figure 4.

Conjecture. Every 3-connected cubic graph of order 3p

has a P3—factor.

Note that there exists a 2-connected cubic graph of

order 3p with no P_-factors as illustrated in Figure 4b.

We shall intrgduce a special family of graphs, which
is motivated from "the triominos tiling problem”" in the
next section.

Let m™ be a plane with rectangular coordinates and
I be a set of the lattice points on 7, that is,

I = {(i,j)| both i and j are integers}. We define a
graph G on the plane yrtas follows:

Take a finite subset V < I as the vertex set of G

and join every two vertices x, y of V if and only if the
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distance between x and y is 1. If a graph G obtained in
this manner satisfies the property that G is connected
and every edge of G is contained in some 4-cycle C4 of G
(which will be referred to as a square hereafter), then
G is called a square graph, see Figure 5a. Note that

the graph in Figure 5b is not a square graph.

(b) A graph which is
not a square graph

(a) A square graph and (c) G-v has a P —-factor

its P3—factor

3

Figure 5.

Theorem 4.1. Every square graph of order 3p has a P3—

factor.

Theorem 4.1 is an immediate consequence of the next
theorem, for which we shall give a brief outlint of the

proof.

Theorem 4.2. Let G be a square graoh of order p.
(1) If p 0 (mod 3), G has a P3-factor,(Fig. 5a)

(r1) 1If p t
of degree 2 in G, G - v has a P -factor,

(Fig. 5c¢)

I T
O

1 (mod 3) and v is an a



10 Path Factors of a Graph

Outline of proof. For convenience, we say a v-semifac-

tor of G is a P3-subgraph which contains all the ver-
tices of G except a single vertex v. By the capital
letters A, B, C,..., we denote squares (faces) on the
plane, and by the small letters a,b,c,..., we denote
vertices of G. Two squares (faces) A and B intersect
if they have a common vertex of G, and they are adja-

cent if they have a common edge of G.
Our proof is by induction on the order p of G, and

it is shown in Figure 6 that all square graphs of small
order pwithp = 0 or 1 (mod 3) have a P3—factor or a

v-semifactor respectively, as the base of induction.
(I) G is a square graph of order p = 0 (mod 3).

Lemma 4.1. If there is a square of G which is not

adjacent to any other square, then G has a P3-factor.

Proof. For convenience, we name the squares (faces)
and vertices of G as in Figure 7a.

Suppose that x is noéia cutvertex of G. Then
G-{a,b} has a c~-semifactor by the induction hypothesis
and so G has a P_-factor.

Suppose thai x 1s a cutvertex of G. If G % C, then
G-{a,b,c} has a P3—factor by the hypothesis, and thus
G has a P3—factor. Hence we may assume that G >B,C.
Set G-{a,b} = H u X such that H > C, K>B. Then both
H and K are square graphs. We now divide our proof

into three cases.

case 1. |V(H)| = 0 (or 1) (mod 3) By the hypothesis,

H (or K) has a P3—factor and K (or H) has a x-semi-

factor (or c-semifactor), respectively. Therefore, G

has a I%—factor.



A g
g @ T

EEFERRES |
n @R P B A



12 Path Factors of a Graph

(b)

Figure 7.

Case 2. [V(H) | = 2 (mod 3) If G >D and G 3 E, then
H-{c,e} has a P,-factor. If G > D and E. then H - ¢

3

has e-semifactor. If G E, then G » F. 1In this

=~ A o f o
[N AN AN A |

Nt

.
case, it can be shown

Q

-

’ b 4 4

w

has a P3-factor by inspection. Hence H + a has a P_-
factor. Similarly, we see that K +b has a P3—factor.
Consequently, G has a P3-factor. 0

We require three more lemmas in order to prove (I)
of Theorem 4.2, but as their proofs are long and monoto-

nous, we shall omit them.

Lemma 4.2. If G has a vertex v which is contained in
exactly two squares (see Figure 7b), then G has a P3-

factor. 0

Lemma 4¢.3. If G has a square which has exactly one

adjacent square, then G has a P3-factor. 0

Lemma 4.4. If every square of G has at least two adja-

cent squares, then G has a P3-factor. ]



P3-Factors 13

(II1) G 1s a connected square graph of order 1 (mod 3)

and v 1s an arbitrary vertex of G with degree 2.

Orientation of Proof of (II). For convenience, we name

the square of a part of G as shown in Figure 8.

" -
0] P
N \_ » Ul
v E H
- N —— A
A B I
D O N L .
F C D
- N L_
Figure 8.

If G - B, C, then G - v has a P3—factor by induc-
tion. Hence we may assume that G # C. Moreover, if
G# B, Cand G > D, then G 3 E, F which implies that G
has a v-semifactor by induction.

The proof is completed by considering the following
12 cases and proving that G has a v-semifactor in each

case by induction. However, since the proof of each

case is long and tedious we only list the cases:
Case 1. B, D¢ G

Case 2. Bec G, D¢ G, Fec G, Ec G

Case 3. Bec G, D¢ G, Fec G, E ¢ G

Case 4. Bc G, D¢ G, F¢ G, Ec G

Case 5. Bc G, D¢ G, F £ G, E¢ G

Case 6 Bc G, Dc G, E ¢ G,

I <G

®)
m
0
o
N
w
n
@
w)
n
@
td
n
Q)
O
n
Q)
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Case 8. B ¢ G, D cG, E cG, O cG, I ¢¢@G

Case 9. B <G, DG, EcG, O ¢G, P cG, I cG
Case 10. B <G, D <G, E cG, O G, P cG, I ¢G
Case 11. B <« G, DcG, EcG, O ¢G, P ¢ G, HcG.
Case 12. B ¢« G, D c G, E cG, O ¢G, P ¢ G, H¢G. 0

5. APPLICATIONS OF PB—FACTORS FOR TRIOMINOS TILING
PROBLEMS

We remove an arbitrary number of squares from an m x n

chessboard so that the remaining part is connected, and

call it a defective board or more briefly a d-board.

Two unit squares of a defective chessboard are adjacent
if th

ey have a common edge. A d-board B is said to be
tough if every pair of adjacent unit squares is con-
tained in a 2 x 2 subsquare of B. A tough d-board is

illustrated in Figure 9.

Figure 9. A tough d-board (black part)
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There are exactly two kinds of triominos which have
different shape called Tic (Figure 10a) and El1 (Figure
10b).

Figure 10. Tic and El

By tiling a d-board B with triominos we mean cover-
ing each square of B exactly once without parts of the
triominos extending over the removed square or the edges

of the board (see examples in Figure 11).

Figure 11. Tiling a tough d-board by triominos
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A square A of a d-board B is called a corner square

if A is adjacent with exactly two squares of B.
The order of a d-board B is the number of unit

squares of B.

Theorem 5.1. (I) Every tough defective chessboard of
order 0 (mod 3) can be tiled with triominos.

(ITI) Every tough d-board of order 1 (mod 3) can be
tiled with triominos except an arbitrary prescribed

corner square.

Proof. For a given tough d-board B, we define the graph
G(B) such that the vertices of G(B) represent the unit
squares of B and the edges of G(B) represent the adjacency
of the two corresponding unit squares of B and call
those graphs tough graphs. The graph G(B) corresponding
to the tough d-board in Figure 11 is illustrated in

Figure 12.

G q

o -
-

Figure 12. The tough graph corresponding to the tough
d-board of Figure 11
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It is easily verified that every tough graph is a
square graph as defined in Section 5. Applying Theorem
4.2 to G(B), we see that G(B) has a P

implies the theorem. |

3—factor, which

6. IINEAR ARBORICITY AND STAR DECOMPOSITION INDEX
Let (Gl'GZ”"’Gn) be a set of graphs. If a graph G can

be partitioned into edge-disjoing union of (Gl’GZ""’Gn)
-subgraphs of G, then the minimum number of those sub-

graphs is called the USI,GZ,...,Gn)-subgraph Decomposi-
tion Index of G. 1In particular, the star decomposition

index of G, denoted by *(G), has a star for each G and

il
the (Pnln > 2)-subgraph decomposition index is the same

as the linear arboricity, 3=(G).

The linear arboricity for any r-regular graph G
was conjectured to be [(r+l)/2] in [2]. This has been
proved when r = 3,4 in Akiyama, Exoo and Harary [4,5],
r = 6 in Tomasta [15], r = 5,6 in Enomoto and Peroche
(11].

We now present a few uses of the (P2,P3)-factor
theorem in linear arboricity problems by showing much

shorter proofs than the original ones.

Theorem 6.1. Every cubic graph has linear arboricty 2.

Proof. By Corollary A2, there exist path-factors F of
G. Let F' be a path-factor of G having the maximum
size among all F's. Denote by H the graph obtained by

o
=4

e

. .
deleting a m G. We claim that H

u

also a path-factor of G. Suppose that H contains a
cycle C, then there are three consecutive vertices
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vir Yy and vy on C. One of the edges.vlv2 or V2V3

could be added to F' so that either F' + vV, or F' +
AL is still a path-factor of G, which contradicts the

maximality of F'. [

Theorem 6.2. Every 4-regular graph has linear arbori-

city 3.

Proof. By Corollary A2, G has a path-factor F. Denote
by H the graph obtained from G by deleting all edges of
F. Since H can be embedded in some cubic graph, it is
union of path-subgraphs Fl and F2 by Theorem 6.1.
Therefore G is the union of F, Fl' and FZ'

We now turn our attention to star decomposition

index.

Theorem 6.3. Let n > 4. Then the star decomposition

index of the complete graph of order n is fn/2]+ 1, i.e.,

*(R ) =[n/21+ 1

Proof. We first show the lower bound *(K ) > [n/2] + 1

by induction on order n. It suffices to prove that

* ) 1 * * -
(Kypo1) 2 m*1 since (RKy) 2 *(K, ;) and [2m/2] =

[ (2m-1)/27 = m.
Suppose that K2m—l = Fl U F2 Uso qu, where each
Fi is a star subgraph of K2m_1. If some Fi is a
K(1,2m-2), then Kom-1 ~ F3 = Kppp UKy =Fp v v
- *
FiquFi4q v ... uvF and so k-1 > (Kyu=p) 2 m by the

induction hypothesis. Hence k > m+l. Therefore, we may
assume that Fi # K(i,2m-2) for every i and thus
IE(Fi)l < 2m-3. Then |F; u... uF | < k(2m-3). On the

other hand, lE(KZm_1)|==(2m—l)m. Hence we obtain k> m+1.
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We next show that *(Kn) <fn/21 + 1. 1t suffices
to prove that *(K, ) < m+l since *(Kyn-1) 2 * (K, ) and
[2m/21 = [(2m-1)/21 = m. Let V(K, ) = {v,| i=1,2,...,

2m} and put

F, = {v,v,|28+]1 < i'< g+m, i = i' (mod 2m)
'8 271 =
U AV vy lmHAl < 3t <2m+ 2, 3 =3 (mod 2m) )

for £ =1,2,...,m,

and
Fm+1 = {V1Vm+l' VZVm+2""'vam+m}‘
Then
K2m = Fl U F2 U «o« U Fm+1, and thus we have
*(K, ) < m+l. [J
P} -
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