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Abstract

Let G be a connected graph of order n, a and b be integers such
that 1 ≤ a ≤ b and 2 ≤ b, and f : V (G) → {a, a + 1, . . . , b} be
a function such that

∑
(f(x);x ∈ V (G)) ≡ 0(mod2). We prove the

following two results: (i) If the binding number of G is greater than
(a+b−1)(n−1)/(an−(a+b)+3) and n ≥ (a+b)2/a, then G has an f -
factor; (ii) if the minimum degree of G is greater than (bn−2)/(a+b),
and n ≥ (a+ b)2/a, then G has an f -factor.

1 Introduction

We consider a finite graph G with vertex set V (G) and edge set E(G), which
has neither loops nor multiple edges. For a vertex x of G, the neighborhood
NG(x) of x in G is the set of vertices of G adjacent to x, and the degree
degG(x) of x is |NG(x)|. We denote by δ(G) the minimum degree of G. For
a subset X of V (G), let

NG(X) := ∪x∈XNG(x).

We say that X is independent if NG(X) ∩ X = ∅. The binding number
bind(G) of G is defined by

bind(G) := min{|NG(X)|
|X|

|∅ 6= X ⊂ V (G), NG(X) 6= V (G)}

(cf.[12]). It is trivial by the definition that bind(G) > c implies that for
every subset X of V (G), we have NG(X) = V (G) or |NG(X)| > c|X|. It is
also obvious that if bind(G) > 1, then G is connected. Let k be a positive
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integer and f ba an integer-valued function defined on V (G)(i.e.,f : V (G)→
{· · · , 0, 1, 2, · · · }). Then a spanning k-regular subgraph of G is called a k-
factor of G, and a spanning subgraph F of G is called a f -factor if degF (x) =
f(x) for all x ∈ V (G).

In this paper, we study conditions on the binding number and on the
minimum degree of a graph G which guarantee the existence of an f -factor
in G. We begin with some known results.

Theorem A (Anderson[1]). If a graph G has even order and bind(G) ≥ 4/3,
then G has a 1-factor.

Theorem B (Woodall[12]). If bind(G) ≥ 3/2,then G has a Hamilton cycle,
in particular, G has a 2-factor.

Recently, Katerinis and Woodall[8] and Katerinis[6] found the following
sufficient conditons for a graph to have a k-factor. These conditions were
also obtained by Egawa and Enomoto[3] independently.

Theorem C Let k ≥ 2 be an integer and G ba a graph of order n. Assume
n ≥ 4k − 6 and kn is even. Then the following two statements holds:

(i) If bind(G) > (2k− 1)(n− 1)/(kn− 2k+ 3), then G has a k-factor[8].
(ii) If δ(G) ≥ n/2, then G has a k-factor[6].

It is shown that the conditions in (i) and (ii) are best possible. Let us
note that if k ≥ 3 and n ≥ 4k − 5, then

2− 1

k
≤ (2k − 1)(n− 1)

kn− 2k + 3
< 2.

We now give our theorem, which is an extension of the above Theorem C.
Moreover, the theorem gives a result concerning the following question: If
bind(G) > c ≥ 2, what factor does a graph G have?

Theorem 1 Let G be a connected graph of order n, a and b be integers such
that 1 ≤ a ≤ b and 2 ≤ b, and f : V (G) → {a, a + 1, . . . , b}. Suppose that
n ≥ (a + b)2/a and

∑
x∈V (G) f(x) ≡ 0(mod 2). If one of the following three

conditions is satisfied, then G has an f -factor.

(i) bind(G) > (a+ b− 1)(n− 1)/(an− (a+ b) + 3); (1)

(ii) δ(G) > (bn− 2)/(a+ b); (2)

(iii) δ(G) ≥ ((b− 1)n+ a+ b− 2)/(a+ b− 1) (3)

and for every non-empty independent subset X of V (G),

|NG(X)| ≥ (b− 1)n+ |X| − 1

a+ b− 1
. (4)
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We now show that the conditions (1) and (2) are best possible. If a
graph G consists of n(n ≥ 2) disjoint copies of a graph H, then we write
G = nH. The join G = A + B has V (G) = V (A) + V (B) and E(G) =
E(A)∪E(B)∪{xy|x ∈ V (A) and y ∈ V (B)}. Let c = [b/a], m be a positive
integer, and G = K2mb−2m−2c + (ma− 1)K2, where Kl denotes the complete
graph of order l. Define a function f : V (G)→ {a, a+ 1, . . . , b} by

f(x) =

{
a if x ∈ V (K2mb−2m−2c)
b otherwise.

Then G has no f -factor since for S = V (K2mb−2m−2c) and T = V (G)\S, we
have

γG(S, T ) = 2b− 2ac− 2 < 0 (see Lemma 1).

Moreover, we have

bind(G) =
(a+ b− 1)(n− 1)

na− (a+ b) + 3 + 2(ac− b)
.

Note that for X = V (G)\(V (K2mb−2m−2c)∪ {u}), where V (K2) = {u, v}, we
obtain

|NG(X)|
|X|

=
n− 1

2(ma− 1)− 1
=

(a+ b− 1)(n− 1)

na− (a+ b) + 3 + 2(ac− b)
= bind(G).

Therefore, if b is divisible by a, then condition (i) is best possible.
Next, suppose that a+ b is even and there exist positive integers s and t

such that bs = at+ 2 and s+ t is even. Let G = (am+ s)K1 +Kbm+t, where
m is a positive integer, and let f be a function on V (G) defined by

f(x) =

{
b if x ∈ V ((am+ s)K1),
a if x ∈ V (Kbm+t).

Then G has no f -factor and

δ(G) = bm+ t =
bn− 2

a+ b
.

Hence condition (ii) is also best possible in this sense.
Note that (iii) of Theorem 1 is an extension of results in[9,13], which are

obtained from (iii) by setting a = b. Similar results on 1-factor can be found
in [2]. Moreover, a similar sufficient condition for a graph to have an [a, b]-
factor, which is a spanning subgraph F such that a ≥ degf (x) ≥ b for all
vertices x, can be found in [5], and similar sufficient conditions for a bipartite
graph to have k-factors are given in [7,4].
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2 Proofs

Let G be a graph and S and T be disjoint subsets of V (G). Then G − S
denotes the subgraph of G induced by V (G)\S, and eG(S, T ) denotes the
number of edges of G joining a vertex in S to a vertex in T . Our proof of
Theorem 1 is analogous to those of [3,8,9,13] and depends on the following
lemma, which is called the f -factor theorem.

Lemma 1 (Tutte[10,11]). Let G be a graph and f : V (G) → {0, 1, 2, · · · }
such that

∑
x∈V (G) f(x) ≡ 0(mod 2). Then G has an f -factor if and only if

γG(S, T ) :=
∑
x∈S

f(x) +
∑
x∈T

(degG−S(x)− f(x))− hG(S, T ) ≥ 0

for all S, T ⊂ V (G), S ∩ T = ∅, where hG(S, T ) denotes the number of com-
ponents C of G− (S∪T ) such that

∑
x∈V (C) f(x)+eG(V (C), T ) ≡ 1(mod 2).

Moreover, the following useful congruence expression holds:

γG(S, T ) ≡
∑

x∈V (G)

f(x) ≡ 0(mod2). (5)

Lemma 2 [12]. Let G be a graph of order n. If bind(G) > c, then δ(G) >
((c− 1)n+ 1)/c, and |NG(X)| > ((c− 1)n+ |X|)/c for all non-empty subsets
X of V (G) with NG(X) 6= V (G).

Proof. Let Y := V (G)\NG(X). Since NG(Y ) ⊆ V (G)\X, we have n −
|X| ≥ |NG(Y )| > c|Y | = c(n−|NG(X)|). Hence |NG(X) > ((c−1)n+|X|)/c,
and so δ(G) > ((c− 1)n+ 1)/c.

Suppose that (i) in Theorem 1 holds. Then, by Lemma 2, we have

δ(G) >
(b− 1)n+ a+ b− 3

a+ b− 1
≥ (b− 1)n

a+ b− 1
, (6)

and

|NG(X)| > (b− 1)n+ a|X|+ (b− 3)(n− |X|)/(n− 1)

a+ b− 1

≥ (b− 1)n+ |X| − 2

a+ b− 1

for every independent subset X of V (G). Hence G satisfies (3) and (4).
Therefore (i) of Theorem 1 is an immediate consequence of (iii) of the theo-
rem, and so we shall prove (ii) and (iii) of the theorem.
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Proof of (iii) of Theorem 1. Suppose that G satisfies the conditions (3)
and (4), but has no f -factor. By Lemma 1 and (5), there exists disjoint
subsets S and T of V (G) such that∑

x∈S

f(x) +
∑
x∈T

(degG−S(x)− f(x))− w ≤ −2,

where w denotes the number of components of G − (S ∪ T ). Note that
S ∪ T 6= ∅ since γ(∅, ∅) = −h(∅, ∅) = 0, which follows from the assumption
that G is connected and

∑
x∈V (G) f(x) ≡ 0(mod2). In particular, we have

a|S|+
∑
x∈T

(degG−S(x)− b)− w ≤ −2. (7)

We choose S and T so that |S|+|T | is as large as possible subject to γ(S, T ) <
0. Let s := |S| and t := |T |. It is clear that

w ≤ n− s− t. (8)

If w > 0 then let m denote the minimum order of components of G−(S∪T ).
Then

m ≤ n− s− t
w

. (9)

and

δ(G) ≤ m− 1 + s+ t. (10)

Moreover, it follows from the choice of S and T that

if a = b then m ≥ 3. (11)

(cf.[8]). If T 6= ∅, let

h := min{degG−s(x)|x ∈ T}.

Then obviously

δ(G) ≤ h+ s. (12)

We consider five cases and derive a contradiction in each case.
Case 1. T = ∅. By (7) and (8), we have

as+ 2 ≤ w ≤ n− s. (13)
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Hence we have by (6),(10),(9) and (12) that

(b− 1)n

a+ b− 1
< δ(G) ≤ m− 1 + s ≤ n− s

w
− 1 + s

≤ n− s
as+ 2

− 1 + s

=
n− 2

a+ 1
− (n− 2− as− s)(as− a+ 1)

(a+ 1)(as+ 2)
.

Since n− 2− as− s ≥ 0 by (13), it follows that

(b− 1)n

a+ b− 1
<
n− 2

a+ 1
,

which implies a(b − 2)n < −2(a + b − 1). This is clearly impossible since
b ≥ 2.

Case 2. T 6= ∅ and h = 0. Let Z := {x ∈ T | degG−S(x) = 0} 6= ∅ and
z = |Z|. Since Z is independent, we have by (4)

(b− 1)n+ z − 1

a+ b− 1
≤ |NG(Z)| ≤ s. (14)

On the other hand, we have by (7), (8) and the fact that b− 1 ≥ 1

as− bz + (1− b)(t− z)− (b− 1)(n− s− t) ≤ −2.

Hence

s ≤ (b− 1)n+ z − 2

a+ b− 1
.

This contradicts (14).

Case 3. T 6= ∅ and 1 ≤ h ≤ b−1. By (7), (8), and the fact that b−h ≥ 1,
we have

as+ (h− b)t− (b− h)(n− s− t) ≤ −2.

Thus

s ≤ (b− h)n− 2

a+ b− h
. (15)

On the other hand, we obtain by (3) and (12) that

(b− 1)n− 1

a+ b− 1
+ 1 ≤ δ(G) ≤ s+ h.
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This inequality together with (15) gives us

(b− 1)n− 1

a+ b− 1
+ 1− h ≤ (b− h)n− 2

a+ b− h
.

Hence

(h− 1)an ≤ (h− 1)(a+ b− 1)(a+ b− h)− (a+ b+ h− 2).

This implies h ≥ 2 and

an ≤ (a+ b− 1)(a+ b− h)− (a+ b+ h− 2)

h− 1
.

This contradicts our assumption that n ≥ (a+ b)2/a.

Case 4. T 6= ∅ and h = b. We have w ≥ as+ 2 by (7), and so we obtain
by (9) that

m ≤ n− s− t
w

≤ n− s− 1

as+ 2
. (16)

If b ≥ 3 then we get the following inequality from an ≥ (a + n)2 > (a + b +
1)(a+ b− 1):

an(b− 2) > (a+ b− 1)(ab+ b2 − 2a− b− 2). (17)

By (3) and (12), we have

(b− 1)n− 1

a+ b− 1
+ 1 ≤ δ(G) ≤ h+ s = b+ s

and so

s ≥ (b− 1)n− 1

a+ b− 1
− (b− 1) (18)

=
n− 3

a+ 1
+
an(b− 2) + (a+ b− 1)(3− (a+ 1)(b− 1))− (a+ 1)

(a+ b− 1)(a+ 1)

>
n− 3

a+ 1
+

(a+ b− 1)(b2 − a− 2b)−+2b+ a− 3

(a+ b− 1)(a+ 1)
. (by(17))

Hence, If b ≥ 3 then s > (n−3)/(a+1), and som < 1 by (16), a contradiction.
If a = b = 2 then s ≥ (n − 4)/3 by (18), and so m < 3 by (16). This
contradicts (11). Therefore we may assume that a = 1 and b = 2. By (16)
and (18), we have m = 1. Thus it follows from (10) and (12) that

δ(G) ≤ s+ t and δ(G) ≤ b+ s = s+ 2.
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Hence, by (7) and (8), we obtain

δ(G) ≤ s+ 2 = as+ 2 ≤ w ≤ n− s− t ≤ n− δ(G).

Hence δ(G) ≤ n/2. This contradicts (3).

Case 5. T 6= ∅ and h > b. By (7), we have as + (h− b)t− w ≤ −2, and
so

w ≥ as+ t+ 2 ≥ s+ t+ 2. (19)

Suppose that m ≥ 3. Then, by (10) and (9), we have

δ(G) ≤ m− 1 + s+ t ≤ m+ w − 3

≤ m+ w − 3 +
1

3
(m− 3)(w − 3) =

mw

3
≤ n

3
.

This contradicts (4). Thus we may assume that m ≤ 2. It follows from (8)
and (19) that s+ t+ 1 ≤ n/2. Then by (3) and (10), we have

(b− 1)n

a+ b− 1
< δ(G) ≤ s+ t+ 1 ≤ n

2
.

Thus n(2b− a− 1) < 0. This is impossible. Consequently, (iii) is proved.

Proof of (ii) of Theorem 1. This is almost identical to the proof of (iii).
Since n ≥ (a+ b)2/a, we have

bn− 2

a+ b
≥ (b− 1)n+ a+ b− 2

a+ b− 1
,

and so (4) still holds by (3). Thus Cases 1, 3, 4 and 5 carry over without
modification from (iii) to (ii) because we don’t use (4) in these cases. The
only case that needs to change is the following:

Case 2. T 6= ∅ and h = 0. By (7) and (8), we have

−2 ≥ as− bt− (n− s− t) ≥ as− bt− b(n− s− t),

and so s ≤ (bn− 2)/(b+ a). Then (3) and (11) give

bn− 2

a+ b
< δ(G) ≤ h+ s = s ≤ bn− 2

a+ b
,

a contradiction. Consequently the proof is complete.
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